

N2D2

Introduction

	Presentation

	About N2D2-IP

	Performing simulations

	Performance evaluation tools

	Tutorials

ONNX Import

	Obtain ONNX models

	Import ONNX models

	Train from ONNX models

Quantization and Export

	Post-training quantization

	Quantization-Aware Training

	Pruning

	Export: C++

	Export: C++/STM32

	Export: TensorRT

	Export: DNeuro

	Export: ONNX

	Export: other / legacy

INI File Interface

	Introduction

	Databases

	Stimuli data analysis

	Stimuli provider (Environment)

	Network Layers

	Targets (outputs & losses)

	Adversarial module

Python API

	Introduction

	Databases

	Cells

	Tensor

	Interoperability

	Export

	Example

C++/Python core

	Core N2D2

	Example

C++ API / Developer

	Introduction

Indices and tables

	Index

	Module Index

	Search Page

	References

Presentation

The N2D2 platform is a comprehensive solution for fast and accurate Deep
Neural Network (DNN) simulation and full and automated DNN-based
applications building. The platform integrates database construction,
data pre-processing, network building, benchmarking and hardware export
to various targets. It is particularly useful for DNN design and
exploration, allowing simple and fast prototyping of DNN with different
topologies. It is possible to define and learn multiple network topology
variations and compare the performances (in terms of recognition rate
and computationnal cost) automatically. Export targets include CPU, DSP
and GPU with OpenMP, OpenCL, Cuda, cuDNN and TensorRT programming models
as well as custom hardware IP code generation with High-Level Synthesis
for FPGA and dedicated configurable DNN accelerator IP 1.

In the following, the first section describes the database handling
capabilities of the tool, which can automatically generate learning,
validation and testing data sets from any hand made database (for
example from simple files directories). The second section briefly
describes the data pre-processing capabilites built-in the tool, which
does not require any external pre-processing step and can handle many
data transformation, normalization and augmentation (for example using
elastic distortion to improve the learning). The third section show an
example of DNN building using a simple INI text configuration file. The
fourth section show some examples of metrics obtained after the learning
and testing to evaluate the performances of the learned DNN. Next, the
fifth section introduces the DNN hardware export capabilities of the
toolflow, which can automatically generate ready to use code for various
targets such as embedded GPUs or full custom dedicated FPGA IP. Finally,
we conclude by summarising the main features of the tool.

Database handling

The tool integrates everything needed to handle custom or hand made
databases:

	Genericity: load image and sound, 1D, 2D or 3D data;

	Associate a label for each data point (useful for scene labeling for
example) or a single label to each data file (one object/class per image
for example), 1D or 2D labels;

	Advanced Region of Interest (ROI) handling:

	Support arbitrary ROI shapes (circular, rectangular, polygonal or pixelwise
defined);

	Convert ROIs to data point (pixelwise) labels;

	Extract one or multiple ROIs from an initial dataset to create as many
corresponding additional data to feed the DNN;

	Native support of file directory-based databases, where each
sub-directory represents a different label. Most used image file formats
are supported (JPEG, PNG, PGM…);

	Possibility to add custom datafile format in the tool without any change
in the code base;

	Automatic random partitionning of the database into learning, validation
and testing sets.

Data pre-processing

Data pre-processing, such as image rescaling, normalization,
filtering… is directly integrated into the toolflow, with no need for
external tool or pre-processing. Each pre-processing step is called a
transformation.

The full sequence of transformations can be specified easily in a INI
text configuration file. For example:

; First step: convert the image to grayscale
[env.Transformation-1]
Type=ChannelExtractionTransformation
CSChannel=Gray

; Second step: rescale the image to a 29x29 size
[env.Transformation-2]
Type=RescaleTransformation
Width=29
Height=29

; Third step: apply histogram equalization to the image
[env.Transformation-3]
Type=EqualizeTransformation

; Fourth step (only during learning): apply random elastic distortions to the images to extent the learning set
[env.OnTheFlyTransformation]
Type=DistortionTransformation
ApplyTo=LearnOnly
ElasticGaussianSize=21
ElasticSigma=6.0
ElasticScaling=20.0
Scaling=15.0
Rotation=15.0

Example of pre-processing transformations built-in in the tool are:

	Image color space change and color channel extraction;

	Elastic distortion;

	Histogram equalization (including CLAHE);

	Convolutional filtering of the image with custom or pre-defined kernels
(Gaussian, Gabor…);

	(Random) image flipping;

	(Random) extraction of fixed-size slices in a given label (for
multi-label images)

	Normalization;

	Rescaling, padding/cropping, triming;

	Image data range clipping;

	(Random) extraction of fixed-size slices.

Deep network building

The building of a deep network is straightforward and can be done
withing the same INI configuration file. Several layer types are
available: convolutional, pooling, fully connected, Radial-basis
function (RBF) and softmax. The tool is highly modular and new layer
types can be added without any change in the code base. Parameters of
each layer type are modifiable, for example for the convolutional layer,
one can specify the size of the convolution kernels, the stride, the
number of kernels per input map and the learning parameters (learning
rate, initial weights value…). For the learning, the data dynamic can
be chosen between 16 bits (with NVIDIA cuDNN 2), 32 bit and 64 bit
floating point numbers.

The following example, which will serve as the use case for the rest of
this presentation, shows how to build a DNN with 5 layers: one
convolution layer, followed by one MAX pooling layer, followed by two
fully connected layers and a softmax output layer.

; Specify the input data format
[env]
SizeX=24
SizeY=24
BatchSize=12

; First layer: convolutional with 3x3 kernels
[conv1]
Input=env
Type=Conv
KernelWidth=3
KernelHeight=3
NbOutputs=32
Stride=1

; Second layer: MAX pooling with pooling area 2x2
[pool1]
Input=conv1
Type=Pool
Pooling=Max
PoolWidth=2
PoolHeight=2
NbOutputs=32
Stride=2
Mapping.Size=1 ; one to one connection between convolution output maps and pooling input maps

; Third layer: fully connected layer with 60 neurons
[fc1]
Input=pool1
Type=Fc
NbOutputs=60

; Fourth layer: fully connected with 10 neurons
[fc2]
Input=fc1
Type=Fc
NbOutputs=10

; Final layer: softmax
[softmax]
Input=fc2
Type=Softmax
NbOutputs=10
WithLoss=1

[softmax.Target]
TargetValue=1.0
DefaultValue=0.0

The resulting DNN is shown in figure [fig:DNNExample].

[image: Automatically generated and ready to learn DNN from the INI configuration file example.]

Automatically generated and ready to learn DNN from the INI
configuration file example.

The learning is accelerated in GPU using the NVIDIA cuDNN framework,
integrated into the toolflow. Using GPU acceleration, learning times can
be reduced typically by two orders of magnitude, enabling the learning
of large databases within tens of minutes to a few hours instead of
several days or weeks for non-GPU accelerated learning.

Performances evaluation

The software automatically outputs all the information needed for the
network applicative performances analysis, such as the recognition rate
and the validation score during the learning; the confusion matrix
during learning, validation and test; the memory and computation
requirements of the network; the output maps activity for each layer,
and so on, as shown in figure [fig:metrics].

Hardware exports

Once the learned DNN recognition rate performances are satisfying, an
optimized version of the network can be automatically exported for
various embedded targets. An automated network computation performances
benchmarking can also be performed among different targets.

The following targets are currently supported by the toolflow:

	Plain C code (no dynamic memory allocation, no floating point
processing);

	C code accelerated with OpenMP;

	C code tailored for High-Level Synthesis (HLS) with Xilinx Vivado HLS;

	Direct synthesis to FPGA, with timing and utilization after routing;

	Possibility to constrain the maximum number of clock cycles desired to
compute the whole network;

	FPGA utilization vs number of clock cycle
trade-off analysis;

	OpenCL code optimized for either CPU/DSP or GPU;

	Cuda kernels, cuDNN and TensorRT code optimized for NVIDIA GPUs.

Different automated optimizations are embedded in the exports:

	DNN weights and signal data precision reduction (down to 8 bit integers
or less for custom FPGA IPs);

	Non-linear network activation functions approximations;

	Different weights discretization methods.

The exports are generated automatically and come with a Makefile and a
working testbench, including the pre-processed testing dataset. Once
generated, the testbench is ready to be compiled and executed on the
target platform. The applicative performance (recognition rate) as well
as the computing time per input data can then be directly mesured by the
testbench.

[image: Example of network benchmarking on different hardware targets.]

Example of network benchmarking on different hardware targets.

The figure [fig:TargetsBenchmarking] shows an example of benchmarking
results of the previous DNN on different targets (in log scale).
Compared to desktop CPUs, the number of input image pixels processed per
second is more than one order of magnitude higher with GPUsand at least
two orders of magnitude better with synthesized DNN on FPGA.

Summary

The N2D2 platform is today a complete and production ready neural
network building tool, which does not require advanced knownledges in
deep learning to be used. It is tailored for fast neural network
applications generation and porting with minimum overhead in terms of
database creation and management, data pre-processing, networks
configuration and optimized code generation, which can save months of
manual porting and verification effort to a single automated step in the
tool.

	1

	Ongoing work

	2

	On future GPUs

About N2D2-IP

While N2D2 is our deep learning open-source core framework, some modules
referred as “N2D2-IP” in the manual, are only available through custom
license agreement with CEA LIST.

If you are interested in obtaining some of these modules, please contact
our business developer for more information on available licensing
options:

Sandrine VARENNE
(Sandrine.VARENNE@cea.fr)

In addition to N2D2-IP modules, we can also provide our expertise to
design specific solutions for integrating DNN in embedded hardware
systems, where power, latency, form factor and/or cost are constrained.
We can target CPU/DSP/GPU CoTS hardware as well as our own PNeuro
(programmable) and DNeuro (dataflow) dedicated hardware accelerator IPs
for DNN on FPGA or ASIC.

Performing simulations

Minimum system requirements

	Supported processors:

	ARM Cortex A15 (tested on Tegra K1)

	ARM Cortex A53/A57 (tested on Tegra X1)

	Pentium-compatible PC (Pentium III, Athlon or more-recent system
recommended)

	Supported operating systems:

	Windows \(\geq\) 7 or Windows Server
\(\geq\) 2012, 64 bits with Visual Studio \(\geq\) 2015.2 (2015
Update 2)

	GNU/Linux with GCC \(\geq\) 4.4 (tested on RHEL
\(\geq\) 6, Debian \(\geq\) 6, Ubuntu \(\geq\) 14.04)

	At least 256 MB of RAM (1 GB with GPU/CUDA) for MNIST dataset processing

	At least 150 MB available hard disk space + 350 MB for MNIST dataset
processing

For CUDA acceleration:

	CUDA \(\geq\) 6.5 and CuDNN \(\geq\) 1.0

	NVIDIA GPU with CUDA compute capability \(\geq\) 3 (starting from
Kepler micro-architecture)

	At least 512 MB GPU RAM for MNIST dataset processing

Obtaining N2D2

Prerequisites

Red Hat Enterprise Linux (RHEL) 6

Make sure you have the following packages installed:

	cmake

	gnuplot

	opencv

	opencv-devel (may require the rhel-x86_64-workstation-optional-6
repository channel)

Plus, to be able to use GPU acceleration:

	Install the CUDA repository package:

rpm -Uhv http://developer.download.nvidia.com/compute/cuda/repos/rhel6/x86_64/cuda-repo-rhel6-7.5-18.x86_64.rpm
yum clean expire-cache
yum install cuda

	Install cuDNN from the NVIDIA website: register to NVIDIA
Developer [https://developer.nvidia.com/cudnn] and download the
latest version of cuDNN. Simply copy the header and library files from
the cuDNN archive to the corresponding directories in the CUDA
installation path (by default: /usr/local/cuda/include and
/usr/local/cuda/lib64, respectively).

	Make sure the CUDA library path (e.g. /usr/local/cuda/lib64) is added to
the LD_LIBRARY_PATH environment variable.

Ubuntu

Make sure you have the following packages installed, if they are
available on your Ubuntu version:

	cmake

	gnuplot

	libopencv-dev

	libcv-dev

	libhighgui-dev

Plus, to be able to use GPU acceleration:

	Install the CUDA repository package matching your distribution. For
example, for Ubuntu 14.04 64 bits:

wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu!\color{gray}{1404}!/!\color{gray}{x86_64}!/cuda-repo-ubuntu!\color{gray}{1404}!_7.5-18_!\color{gray}{amd64}!.deb
dpkg -i cuda-repo-ubuntu!\color{gray}{1404}!_7.5-18_!\color{gray}{amd64}!.deb

	Install the cuDNN repository package matching your distribution. For
example, for Ubuntu 14.04 64 bits:

 wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu!\color{gray}{1404}!/!\color{gray}{x86_64}!/nvidia-machine-learning-repo-ubuntu!\color{gray}{1404}!_4.0-2_!\color{gray}{amd64}!.deb
 dpkg -i nvidia-machine-learning-repo-ubuntu!\color{gray}{1404}!_4.0-2_!\color{gray}{amd64}!.deb

Note that the cuDNN repository package is provided by NVIDIA for Ubuntu
starting from version 14.04.

	Update the package lists: apt-get update

	Install the CUDA and cuDNN required packages:

apt-get install cuda-core-7-5 cuda-cudart-dev-7-5 cuda-cublas-dev-7-5 cuda-curand-dev-7-5 libcudnn5-dev

	Make sure there is a symlink to /usr/local/cuda:

ln -s /usr/local/cuda-7.5 /usr/local/cuda

	Make sure the CUDA library path (e.g. /usr/local/cuda/lib64) is added to
the LD_LIBRARY_PATH environment variable.

Windows

On Windows 64 bits, Visual Studio \(\geq\) 2015.2 (2015 Update 2) is
required.

Make sure you have the following software installed:

	CMake (http://www.cmake.org/): download and run the Windows installer.

	dirent.h C++ header (https://github.com/tronkko/dirent): to be put
in the Visual Studio include path.

	Gnuplot (http://www.gnuplot.info/): the bin sub-directory in the install
path needs to be added to the Windows PATH environment variable.

	OpenCV (http://opencv.org/): download the latest 2.x version for Windows
and extract it to, for example, C:\OpenCV\. Make sure to define the
environment variable OpenCV_DIR to point to
C:\OpenCV\opencv\build. Make sure to add the bin sub-directory
(C:\OpenCV\opencv\build\x64\vc12\bin) to the Windows PATH
environment variable.

Plus, to be able to use GPU acceleration:

	Download and install CUDA toolkit 8.0 located at
https://developer.nvidia.com/compute/cuda/8.0/prod/local_installers/cuda_8.0.44_windows-exe:

rename cuda_8.0.44_windows-exe cuda_8.0.44_windows.exe
cuda_8.0.44_windows.exe -s compiler_8.0 cublas_8.0 cublas_dev_8.0 cudart_8.0 curand_8.0 curand_dev_8.0

	Update the PATH environment variable:

set PATH=%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin;%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v8.0\libnvvp;%PATH%

	Download and install cuDNN 8.0 located at
http://developer.download.nvidia.com/compute/redist/cudnn/v5.1/cudnn-8.0-windows7-x64-v5.1.zip
(the following command assumes that you have 7-Zip installed):

7z x cudnn-8.0-windows7-x64-v5.1.zip
copy cuda\include*.* ^
 "%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include\"
copy cuda\lib\x64*.* ^
 "%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64\"
copy cuda\bin*.* ^
 "%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin\"

Getting the sources

Use the following command:

git clone --recursive git@github.com:CEA-LIST/N2D2.git

Note

You need the recursive option to download the pybind11 submodule.

Compilation

To compile the program:

mkdir build
cd build
cmake .. && make

On Windows, you may have to specify the generator, for example:

cmake .. -G"Visual Studio 14"

Then open the newly created N2D2 project in Visual Studio 2015. Select
“Release” for the build target. Right click on ALL_BUILD item and
select “Build”.

Downloading training datasets

A python script located in the repository root directory allows you to
select and automatically download some well-known datasets, like MNIST
and GTSRB (the script requires Python 2.x with bindings for GTK 2
package):

./tools/install/install_dataset.py

By default, the datasets are downloaded in the path specified in the
N2D2_DATA environment variable, which is the root path used by the
N2D2 tool to locate the databases. If the N2D2_DATA variable is not
set, the default value used is /local/$USER/n2d2_data/ (or
/local/n2d2_data/ if the USER environment variable is not set) on
Linux and C:\n2d2_data\ on Windows.

Please make sure you have write access to the N2D2_DATA path, or if
not set, in the default /local/$USER/n2d2_data/ path.

Run the learning

The following command will run the learning for 600,000 image
presentations/steps and log the performances of the network every 10,000
steps:

./n2d2 "mnist24_16c4s2_24c5s2_150_10.ini" -learn 600000 -log 10000

Note: you may want to check the gradient computation using the
-check option. Note that it can be extremely long and can
occasionally fail if the required precision is too high.

Test a learned network

After the learning is completed, this command evaluate the network
performances on the test data set:

./n2d2 "mnist24_16c4s2_24c5s2_150_10.ini" -test

Interpreting the results

Recognition rate

The recognition rate and the validation score are reported during the
learning in the TargetScore_/Success_validation.png file, as shown
in figure [fig:validationScore].

[image: Recognition rate and validation score during learning.]

Recognition rate and validation score during learning.

Confusion matrix

The software automatically outputs the confusion matrix during learning,
validation and test, with an example shown in figure
[fig:ConfusionMatrix]. Each row of the matrix contains the number of
occurrences estimated by the network for each label, for all the data
corresponding to a single actual, target label. Or equivalently, each
column of the matrix contains the number of actual, target label
occurrences, corresponding to the same estimated label. Idealy, the
matrix should be diagonal, with no occurrence of an estimated label for
a different actual label (network mistake).

[image: Example of confusion matrix obtained after the learning.]

Example of confusion matrix obtained after the learning.

The confusion matrix reports can be found in the simulation directory:

	TargetScore_/ConfusionMatrix_learning.png;

	TargetScore_/ConfusionMatrix_validation.png;

	TargetScore_/ConfusionMatrix_test.png.

Memory and computation requirements

The software also report the memory and computation requirements of the
network, as shown in figure [fig:stats]. The corresponding report can be
found in the stats sub-directory of the simulation.

[image: Example of memory and computation requirements of the network.]

Example of memory and computation requirements of the network.

Kernels and weights distribution

The synaptic weights obtained during and after the learning can be
analyzed, in terms of distribution (weights sub-directory of the
simulation) or in terms of kernels (kernels sub-directory of the
simulation), as shown in [fig:weights].

Output maps activity

The initial output maps activity for each layer can be visualized in the
outputs_init sub-directory of the simulation, as shown in figure
[fig:outputs].

[image: Output maps activity example of the first convolutional layer of the network.]

Output maps activity example of the first convolutional layer of the
network.

Performance evaluation tools

Key performance metrics

The key performance metrics are the recall and precision for each class and
the average recall and precision over all the classes. These performance
metrics are automatically computed by the interactive confusion matrix tool
embedded in N2D2, as shown below.

[image: Recall and precision for each class and average recall and precision over all the classes in the interactive confusion matrix tool.]

Recall and precision for each class and average recall and precision
over all the classes in the interactive confusion matrix tool.

The accuracy, in classification context, is not a valid metric for unbalanced
classes, which is typically the case for object detection / segmentation
applications, where the background represent a much larger portion of the
objects or defects. Indeed, in this case, the number of true negative is
easily much larger than the number of true positives, false positives and
false negatives combined, leading to accuracies close to 100% even for no
informative (non working) classification, as illustrated in the figure below.

[image: Recall, Precision and Accuracy definitions.]

Recall, Precision and Accuracy definitions.

During the learning, N2D2 also provides a range of metrics with the
confusion matrix, which are saved in the
*.Target/ConfusionMatrix_*_score.png file, as shown in the extract in
the following figure. The metric used for the validation can be specified with
the -valid-metric N2D2 command line argument. The default metric used
is the recall (a.k.a. sensitivity).

[image: Metrics associated to the confusion matrix in N2D2.]

Metrics associated to the confusion matrix in N2D2.

The metric figure used for the validation and the computing of the overall
score in N2D2 is a raw figure, aggregating all the classes and images. It
can therefore differ from the average metric reported in the confusion matrix,
which is the average of the metric of each class.

Interactive Confusion Matrix Tool

N2D2-IP only: available upon request.

Overview

The interactive confusion matrix (main window show in next figure) tool allows
you to explore, sort, combine or extract scores from large confusion matrix.
Its main features are:

	Sorting;

	Transpose switch;

	Recall and precision;

	Aggregated recall and precision on selected classes;

	Percentages / total count switch;

	Reordering / ordering reset;

	∅ for ignored area.

The tool can be run after a learning or a test in N2D2, by launching the
.Target/ConfusionMatrix_.py Python script (requires Python 3.7).

[image: Interactive confusion matrix tool main window.]

Interactive confusion matrix tool main window.

Single class performances evaluation

Single class recall and precision score metrics are shown for each row of the
confusion matrix. There are two sets of metrics:

	Recall w/o Ø and precision w/o Ø: metrics considering only the defect type confusion over the pixels annotated as defect, as show in the table below;

[image: ../_images/recall_precision_table_wo.png]

	Recall and precision: metrics including the defect/no defect confusion as well as the type confusion, as shown in the table below.

[image: ../_images/recall_precision_table.png]

Classes aggregation

When selecting multiple row in the confusion table, the overall recall and
precision are automatically computed for the selection by aggregating the
selected values. They are displayed in the right table, as shown below.

[image: Classes aggregation recall and precision.]

Classes aggregation recall and precision.

Selected items table view

When double-clicking on a single cell in the confusion table, or pressing
the Enter key with a selection, the list of all the images with the
confusions for the selected cells is displayed. The recall and precision are
computed for each (image + target class) pair, as shown below.

[image: List of confusion for selected cells in the confusion matrix.]

List of confusion for selected cells in the confusion matrix.

Items viewer

When double-clicking on a row in the selected items table view, the ScoreTune
viewer is opened for the corresponding image, showing the estimated classes
in the image, as shown below. The F1 key allows to switch between the
estimated classes and the annotations in the ScoreTune viewer.

[image: Items viewer (using ScoreTune).]

Items viewer (using ScoreTune).

Automatic Performances Report Generation
It is possible to copy selections from the confusion matrix table or the selected items table using the CTRL + c keyboard shortcut. Selections can be pasted to Microsoft Word or LibreOffice Writer keeping the tabular formatting from the interactive viewer. When copying rows from the selected items table, the corresponding images with the target and estimated annotation are copied as well for each row.

In addition to the copy and paste feature, full report can be generated automatically from the confusion matrix, using the F1 key in the main window. Parameters for the report generation can be modified directly in the Python script and are described below:

Automatic Performances Report Generation

N2D2-IP only: available upon request.

It is possible to copy selections from the confusion matrix table or the
selected items table using the CTRL + c keyboard shortcut. Selections can be
pasted to Microsoft Word or LibreOffice Writer keeping the tabular formatting
from the interactive viewer. When copying rows from the selected items table,
the corresponding images with the target and estimated annotation are copied
as well for each row.

In addition to the copy and paste feature, full report can be generated
automatically from the confusion matrix, using the F1 key in the main window.
Parameters for the report generation can be modified directly in the Python
script and are described below:

	Parameter

	Default value

	Description

	nbMainHits

	3

	Maximum number of items to include for the main hits

	thresMainHits

	1000.0

	Threshold in count/slice for matching target and estimated items to consider a main hit

	nbMainConfusions

	10

	Maximum number of items to include for the main confusions

	thresMainConfusions

	100.0

	Threshold in count/slice for mismatching target and estimated items to consider a main confusion

	nbMainMisses

	10

	Maximum number of items to include for the main misses

	thresMainMisses

	1000.0

	Threshold in count/slice for mismatching target and Ø items to consider a main miss

Tutorials

Learning deep neural networks: tips and tricks

Choose the learning solver

Generally, you should use the SGD solver with a momemtum (typical value
for the momentum: 0.9). It generalizes better, often significantly
better, than adaptive methods like Adam
[WilsonRoelofsStern+17].

Adaptive solvers, like Adam, may be used for fast exploration and
prototyping, thanks to their fast convergence.

Choose the learning hyper-parameters

You can use the -find-lr option available in the n2d2 executable
to automatically find the best learning rate for a given neural network.

Usage example:

./n2d2 model.ini -find-lr 10000

This command starts from a very low learning rate (1.0e-6) and increase
it exponentially to reach the maximum value (10.0) after 10000 steps, as
shown in figure [fig:findLrRange]. The loss change during this phase is
then plotted in function of the learning rate, as shown in figure
[fig:findLr].

[image: Exponential increase of the learning rate over the specified number of iterations, equals to the number of steps divided by the batch size (here: 24).]

Exponential increase of the learning rate over the specified number
of iterations, equals to the number of steps divided by the batch
size (here: 24).

[image: Loss change as a function of the learning rate.]

Loss change as a function of the learning rate.

Note that in N2D2, the learning rate is automatically normalized by the
global batch size (\(N \times \text{\lstinline!IterationSize!}\))
for the SGDSolver. A simple linear scaling rule is used, as
recommanded in [GDollarG+17].
The effective learning rate \(\alpha_{\text{eff}}\) applied for
parameters update is therefore:

\[\alpha_{\text{eff}} = \frac{\alpha}{N \times \text{\lstinline!IterationSize!}} \text{ with α = \lstinline!LearningRate!}\]

Typical values for the SGDSolver are:

Solvers.LearningRate=0.01
Solvers.Decay=0.0001
Solvers.Momentum=0.9

Convergence and normalization

Deep networks (> 30 layers) and especially residual networks usually
don’t converge without normalization. Indeed, batch normalization is
almost always used. ZeroInit is a method that can be used to overcome
this issue without normalization [ZDM19].

Building a classifier neural network

For this tutorial, we will use the classical MNIST handwritten digit
dataset. A driver module already exists for this dataset, named
MNIST_IDX_Database.

To instantiate it, just add the following lines in a new INI file:

[database]
Type=MNIST_IDX_Database
Validation=0.2 ; Use 20\% of the dataset for validation

In order to create a neural network, we first need to define its input,
which is declared with a [sp] section (sp for StimuliProvider).
In this section, we configure the size of the input and the batch size:

[sp]
SizeX=32
SizeY=32
BatchSize=128

We can also add pre-processing transformations to the StimuliProvider,
knowing that the final data size after transformations must match the
size declared in the [sp] section. Here, we must rescale the MNIST
28x28 images to match the 32x32 network input size.

[sp.Transformation_1]
Type=RescaleTransformation
Width=[sp]SizeX
Height=[sp]SizeY

Next, we declare the neural network layers. In this example, we
reproduced the well-known LeNet network. The first layer is a 5x5
convolutional layer, with 6 channels. Since there is only one input
channel, there will be only 6 convolution kernels in this layer.

[conv1]
Input=sp
Type=Conv
KernelWidth=5
KernelHeight=5
NbOutputs=6

The next layer is a 2x2 MAX pooling layer, with a stride of 2
(non-overlapping MAX pooling).

[pool1]
Input=conv1
Type=Pool
PoolWidth=2
PoolHeight=2
NbOutputs=[conv1]NbOutputs
Stride=2
Pooling=Max
Mapping.Size=1 ; One to one connection between input and output channels

The next layer is a 5x5 convolutional layer with 16 channels.

[conv2]
Input=pool1
Type=Conv
KernelWidth=5
KernelHeight=5
NbOutputs=16

Note that in LeNet, the [conv2] layer is not fully connected to the
pooling layer. In N2D2, a custom mapping can be defined for each input
connection. The connection of \(n\)-th output map to the inputs is
defined by the \(n\)-th column of the matrix below, where the rows
correspond to the inputs.

Mapping(pool1)=\
1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 \
1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 \
1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 \
0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 \
0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 \
0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1

Another MAX pooling and convolution layer follow:

[pool2]
Input=conv2
Type=Pool
PoolWidth=2
PoolHeight=2
NbOutputs=[conv2]NbOutputs
Stride=2
Pooling=Max
Mapping.Size=1

[conv3]
Input=pool2
Type=Conv
KernelWidth=5
KernelHeight=5
NbOutputs=120

The network is composed of two fully-connected layers of 84 and 10
neurons respectively:

[fc1]
Input=conv3
Type=Fc
NbOutputs=84

[fc2]
Input=fc1
Type=Fc
NbOutputs=10

Finally, we use a softmax layer to obtain output classification
probabilities and compute the loss function.

[softmax]
Input=fc2
Type=Softmax
NbOutputs=[fc2]NbOutputs
WithLoss=1

In order to tell N2D2 to compute the error and the classification score
on this softmax layer, one must attach a N2D2 Target to this layer,
with a section with the same name suffixed with .Target:

[softmax.Target]

By default, the activation function for the convolution and the
fully-connected layers is the hyperbolic tangent. Because the [fc2]
layer is fed to a softmax, it should not have any activation function.
We can specify it by adding the following line in the [fc2] section:

[fc2]
...
ActivationFunction=Linear

In order to improve further the networks performances, several things
can be done:

Use ReLU activation functions. In order to do so, just add the
following in the [conv1], [conv2], [conv3] and [fc1]
layer sections:

ActivationFunction=Rectifier

For the ReLU activation function to be effective, the weights must be
initialized carefully, in order to avoid dead units that would be stuck
in the \(]-\infty,0]\) output range before the ReLU function. In
N2D2, one can use a custom WeightsFiller for the weights
initialization. For the ReLU activation function, a popular and
efficient filler is the so-called XavierFiller (see the
[par:XavierFiller] section for more information):

WeightsFiller=XavierFiller

Use dropout layers. Dropout is highly effective to improve the
network generalization capacity. Here is an example of a dropout layer
inserted between the [fc1] and [fc2] layers:

[fc1]
...

[fc1.drop]
Input=fc1
Type=Dropout
NbOutputs=[fc1]NbOutputs

[fc2]
Input=fc1.drop ; Replaces "Input=fc1"
...

Tune the learning parameters. You may want to tune the learning rate
and other learning parameters depending on the learning problem at hand.
In order to do so, you can add a configuration section that can be
common (or not) to all the layers. Here is an example of configuration
section:

[conv1]
...
ConfigSection=common.config

[...]
...

[common.config]
NoBias=1
WeightsSolver.LearningRate=0.05
WeightsSolver.Decay=0.0005
Solvers.LearningRatePolicy=StepDecay
Solvers.LearningRateStepSize=[sp]_EpochSize
Solvers.LearningRateDecay=0.993
Solvers.Clamping=-1.0:1.0

For more details on the configuration parameters for the Solver, see
section [sec:WeightSolvers].

Add input distortion. See for example the
DistortionTransformation (section [par:DistortionTransformation]).

The complete INI model corresponding to this tutorial can be found in
models/LeNet.ini.

In order to use CUDA/GPU accelerated learning, the default layer model
should be switched to Frame_CUDA. You can enable this model by
adding the following line at the top of the INI file (before the first
section):

DefaultModel=Frame_CUDA

Building a segmentation neural network

In this tutorial, we will learn how to do image segmentation with N2D2.
As an example, we will implement a face detection and gender recognition
neural network, using the IMDB-WIKI dataset.

First, we need to instanciate the IMDB-WIKI dataset built-in N2D2
driver:

[database]
Type=IMDBWIKI_Database
WikiSet=1 ; Use the WIKI part of the dataset
IMDBSet=0 ; Don't use the IMDB part (less accurate annotation)
Learn=0.90
Validation=0.05
DefaultLabel=background ; Label for pixels outside any ROI (default is no label, pixels are ignored)

We must specify a default label for the background, because we want to
learn to differenciate faces from the background (and not simply ignore
the background for the learning).

The network input is then declared:

[sp]
SizeX=480
SizeY=360
BatchSize=48
CompositeStimuli=1

In order to work with segmented data, i.e. data with bounding box
annotations or pixel-wise annotations (as opposed to a single label per
data), one must enable the CompositeStimuli option in the [sp]
section.

We can then perform various operations on the data before feeding it to
the network, like for example converting the 3-channels RGB input images
to single-channel gray images:

[sp.Transformation-1]
Type=ChannelExtractionTransformation
CSChannel=Gray

We must only rescale the images to match the networks input size. This
can be done using a RescaleTransformation, followed by a
PadCropTransformation if one want to keep the images aspect ratio.

[sp.Transformation-2]
Type=RescaleTransformation
Width=[sp]SizeX
Height=[sp]SizeY
KeepAspectRatio=1 ; Keep images aspect ratio

; Required to ensure all the images are the same size
[sp.Transformation-3]
Type=PadCropTransformation
Width=[sp]SizeX
Height=[sp]SizeY

A common additional operation to extend the learning set is to apply
random horizontal mirror to images. This can be achieved with the
following FlipTransformation:

[sp.OnTheFlyTransformation-4]
Type=FlipTransformation
RandomHorizontalFlip=1
ApplyTo=LearnOnly ; Apply this transformation only on the learning set

Note that this is an on-the-fly transformation, meaning it cannot be
cached and is re-executed every time even for the same stimuli. We also
apply this transformation only on the learning set, with the ApplyTo
option.

Next, the neural network can be described:

[conv1.1]
Input=sp
Type=Conv
...

[pool1]
...

[...]
...

[fc2]
Input=drop1
Type=Conv
...

[drop2]
Input=fc2
Type=Dropout
NbOutputs=[fc2]NbOutputs

A full network description can be found in the IMDBWIKI.ini file in
the models directory of N2D2. It is a fully-CNN network.

Here we will focus on the output layers required to detect the faces and
classify their gender. We start from the [drop2] layer, which has
128 channels of size 60x45.

Faces detection

We want to first add an output stage for the faces detection. It is a
1x1 convolutional layer with a single 60x45 output map. For each output
pixel, this layer outputs the probability that the pixel belongs to a
face.

[fc3.face]
Input=drop2
Type=Conv
KernelWidth=1
KernelHeight=1
NbOutputs=1
Stride=1
ActivationFunction=LogisticWithLoss
WeightsFiller=XavierFiller
ConfigSection=common.config ; Same solver options that the other layers

In order to do so, the activation function of this layer must be of type
LogisticWithLoss.

We must also tell N2D2 to compute the error and the classification score
on this softmax layer, by attaching a N2D2 Target to this layer, with
a section with the same name suffixed with .Target:

[fc3.face.Target]
LabelsMapping=\${N2D2_MODELS}/IMDBWIKI_target_face.dat
; Visualization parameters
NoDisplayLabel=0
LabelsHueOffset=90

In this Target, we must specify how the dataset annotations are mapped
to the layer’s output. This can be done in a separate file using the
LabelsMapping parameter. Here, since the output layer has a single
output per pixel, the target value can only be 0 or 1. A target value of
-1 means that this output is ignored (no error back-propagated). Since
the only annotations in the IMDB-WIKI dataset are faces, the mapping
described in the IMDBWIKI_target_face.dat file is easy:

background
background 0

padding (*) is ignored (-1)
* -1

not background = face
default 1

Gender recognition

We can also add a second output stage for gender recognition. Like
before, it would be a 1x1 convolutional layer with a single 60x45 output
map. But here, for each output pixel, this layer would output the
probability that the pixel represents a female face.

[fc3.gender]
Input=drop2
Type=Conv
KernelWidth=1
KernelHeight=1
NbOutputs=1
Stride=1
ActivationFunction=LogisticWithLoss
WeightsFiller=XavierFiller
ConfigSection=common.config

The output layer is therefore identical to the face’s output layer, but
the target mapping is different. For the target mapping, the idea is
simply to ignore all pixels not belonging to a face and affect the
target 0 to male pixels and the target 1 to female pixels.

[fc3.gender.Target]
LabelsMapping=\${N2D2_MODELS}/IMDBWIKI_target_gender.dat
; Only display gender probability for pixels detected as face pixels
MaskLabelTarget=fc3.face.Target
MaskedLabel=1

The content of the IMDBWIKI_target_gender.dat file would therefore
look like:

background
?-* (unknown gender)
padding
default -1

male gender
M-? 0 # unknown age
M-0 0
M-1 0
M-2 0
...
M-98 0
M-99 0

female gender
F-? 1 # unknown age
F-0 1
F-1 1
F-2 1
...
F-98 1
F-99 1

ROIs extraction

The next step would be to extract detected face ROIs and assign for each
ROI the most probable gender. To this end, we can first set a detection
threshold, in terms of probability, to select face pixels. In the
following, the threshold is fixed to 75% face probability:

[post.Transformation-thres]
Input=fc3.face
Type=Transformation
NbOutputs=1
Transformation=ThresholdTransformation
Operation=ToZero
Threshold=0.75

We can then assign a target of type TargetROIs to this layer that
will automatically create the bounding box using a segmentation
algorithm.

[post.Transformation-thres.Target-face]
Type=TargetROIs
MinOverlap=0.33 ; Min. overlap fraction to match the ROI to an annotation
FilterMinWidth=5 ; Min. ROI width
FilterMinHeight=5 ; Min. ROI height
FilterMinAspectRatio=0.5 ; Min. ROI aspect ratio
FilterMaxAspectRatio=1.5 ; Max. ROI aspect ratio
LabelsMapping=\${N2D2_MODELS}/IMDBWIKI_target_face.dat

In order to assign a gender to the extracted ROIs, the above target must
be modified to:

[post.Transformation-thres.Target-gender]
Type=TargetROIs
ROIsLabelTarget=fc3.gender.Target
MinOverlap=0.33
FilterMinWidth=5
FilterMinHeight=5
FilterMinAspectRatio=0.5
FilterMaxAspectRatio=1.5
LabelsMapping=\${N2D2_MODELS}/IMDBWIKI_target_gender.dat

Here, we use the fc3.gender.Target target to determine the most
probable gender of the ROI.

Data visualization

For each Target in the network, a corresponding folder is created in
the simulation directory, which contains learning, validation and test
confusion matrixes. The output estimation of the network for each
stimulus is also generated automatically for the test dataset and can be
visualized with the ./test.py helper tool. An example is shown in
figure [fig:targetvisu].

[image: Example of the target visualization helper tool.]

Example of the target visualization helper tool.

Transcoding a learned network in spike-coding

N2D2 embeds an event-based simulator (historically known as ’Xnet’) and
allows to transcode a whole DNN in a spike-coding version and evaluate
the resulting spiking neural network performances. In this tutorial, we
will transcode the LeNet network described in section
[sec:BuildingClassifierNN].

Render the network compatible with spike simulations

The first step is to specify that we want to use a transcode model
(allowing both formal and spike simulation of the same network), by
changing the DefaultModel to:

DefaultModel=Transcode_CUDA

In order to perform spike simulations, the input of the network must be
of type Environment, which is a derived class of StimuliProvider
that adds spike coding support. In the INI model file, it is therefore
necessary to replace the [sp] section by an [env] section and
replace all references of sp to env.

Note that these changes have at this point no impact at all on the
formal coding simulations. The beginning of the INI file should be:

DefaultModel=!\color{red}{Transcode_CUDA}!

; Database
[database]
Type=MNIST_IDX_Database
Validation=0.2 ; Use 20% of the dataset for validation

; Environment
[!\color{red}{env}!]
SizeX=32
SizeY=32
BatchSize=128

[env.Transformation_1]
Type=RescaleTransformation
Width=[!\color{red}{env}!]SizeX
Height=[!\color{red}{env}!]SizeY

[conv1]
Input=!\color{red}{env}!
...

The dropout layer has no equivalence in spike-coding inference and must
be removed:

...
!\color{red}{\st{[fc1.drop]}}!
!\color{red}{\st{Input=fc1}}!
!\color{red}{\st{Type=Dropout}}!
!\color{red}{\st{NbOutputs=[fc1]NbOutputs}}!

[fc2]
Input=fc1!\color{red}{\st{.drop}}!
...

The softmax layer has no equivalence in spike-coding inference and must
be removed as well. The Target must therefore be attached to
[fc2]:

...
!\color{red}{\st{[softmax]}}!
!\color{red}{\st{Input=fc2}}!
!\color{red}{\st{Type=Softmax}}!
!\color{red}{\st{NbOutputs=[fc2]NbOutputs}}!
!\color{red}{\st{WithLoss=1}}!

!\color{red}{\st{[softmax.Target]}}!

[fc2.Target]
...

The network is now compatible with spike-coding simulations. However, we
did not specify at this point how to translate the input stimuli data
into spikes, nor the spiking neuron parameters (threshold value, leak
time constant…).

Configure spike-coding parameters

The first step is to configure how the input stimuli data must be coded
into spikes. To this end, we must attach a configuration section to the
Environment. Here, we specify a periodic coding with random initial
jitter with a minimum period of 10 ns and a maximum period of 100 us:

...
ConfigSection=env.config

[env.config]
; Spike-based computing
StimulusType=JitteredPeriodic
PeriodMin=1,000,000 ; unit = fs
PeriodMeanMin=10,000,000 ; unit = fs
PeriodMeanMax=100,000,000,000 ; unit = fs
PeriodRelStdDev=0.0

The next step is to specify the neurons parameters, that will be common
to all layers and can therefore be specified in the [common.config]
section. In N2D2, the base spike-coding layers use a Leaky
Integrate-and-Fire (LIF) neuron model. By default, the leak time
constant is zero, resulting to simple Integrate-and-Fire (IF) neurons.

Here we simply specify that the neurons threshold must be the unity,
that the threshold is only positive and that there is no incoming
synaptic delay:

...
; Spike-based computing
Threshold=1.0
BipolarThreshold=0
IncomingDelay=0

Finally, we can limit the number of spikes required for the computation
of each stimulus by adding a decision delta threshold at the output
layer:

...
ConfigSection=common.config,fc2.config

[fc2.Target]

[fc2.config]
; Spike-based computing
TerminateDelta=4
BipolarThreshold=1

The complete INI model corresponding to this tutorial can be found in
models/LeNet_Spike.ini.

Here is a summary of the steps required to reproduce the whole
experiment:

./n2d2 "\$N2D2_MODELS/LeNet.ini" -learn 6000000 -log 100000
./n2d2 "\$N2D2_MODELS/LeNet_Spike.ini" -test

The final recognition rate reported at the end of the spike inference
should be almost identical to the formal coding network (around 99% for
the LeNet network).

Various statistics are available at the end of the spike-coding
simulation in the stats_spike folder and the stats_spike.log file.
Looking in the stats_spike.log file, one can read the following line
towards the end of the file:

Read events per virtual synapse per pattern (average): 0.654124

This line reports the average number of accumulation operations per
synapse per input stimulus in the network. If this number if below 1.0,
it means that the spiking version of the network is more efficient than
its formal counterpart in terms of total number of operations!

Obtain ONNX models

Convert from PyTorch

ONNX conversion is natively supported in PyTorch with the torch.onnx.export
function. An example of a pre-trained PyTorch model conversion to ONNX is
provided in tools/pytorch_to_onnx.py:

import torch
from MobileNetV2 import mobilenet_v2

dummy_input = torch.randn(10, 3, 224, 224)
model = mobilenet_v2(pretrained=True)

input_names = ["input"]
output_names = ["output"]

torch.onnx.export(model, dummy_input, "mobilenet_v2_pytorch.onnx", verbose=True, input_names=input_names, output_names=output_names)

Convert from TF/Keras

ONNX conversion is not natively supported by TF/Keras. Instead, a third-party
tool must be used, like keras2onnx or tf2onnx. Currently, the tf2onnx
is the most active and most maintained solution.

The tf2onnx tool can be used in command line, by providing a TensorFlow
frozen graph (.pb).

Note

Make sure to use the option --inputs-as-nchw on the model input(s)
because N2D2 expects NCHW inputs, but the default format in TF/Keras is
NHWC. Otherwise you would typically get an error like:

Error: Unexpected size for ONNX input "conv2d_77_input": got 3 224 224 , but StimuliProvider provides 224 224 3

The format of the exported ONNX graph from TF/Keras will depend on the
execution platform (CPU or GPU). The default format is NHWC on CPU and
NCHW on GPU. ONNX mandates the NCHW format for the operators, so exporting
an ONNX model on CPU can result in the insertion of many Transpose
operations in the graph before and after other operators.

tfmodel=mobilenet_v1_1.0_224_frozen.pb
onnxmodel=mobilenet_v1_1.0_224.onnx
url=http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
tgz=$(basename $url)

if [! -r $tgz]; then
 wget -q $url
 tar zxvf $tgz
fi
python3 -m tf2onnx.convert --input $tfmodel --output $onnxmodel \
 --opset 10 --verbose \
 --inputs-as-nchw input:0 \
 --inputs input:0 \
 --outputs MobilenetV1/Predictions/Reshape_1:0

Example conversion scripts are provided for the Mobilenet families:
tools/mobilenet_v1_to_onnx.sh, tools/mobilenet_v2_to_onnx.sh and
tools/mobilenet_v3_to_onnx.sh.

Download pre-trained models

Many already trained ONNX models are freely available and ready to use in the
ONNX Model Zoo: https://github.com/onnx/models/blob/master/README.md

Import ONNX models

Preliminary steps

ONNX generators may generate complicated models, in order to take into account
for example dynamic size or shape calculation, from previous operator outputs
dimensions. This can be the case even when the graph is static and the dimensions
are known in the ONNX model. While such model may be imported in DL frameworks
using standard operators/layers, it would be vastly sub-optimal, as some part
of the graph would require unnecessary dynamic allocation, and would be very
hard to optimize for inference on embedded platforms.

For this reason, we do not always try to allow proper import of such graph in
N2D2 as is. While some simplifications may be handled directly in N2D2, we
recommend using the
ONNX Simplifier [https://github.com/daquexian/onnx-simplifier] tool on your
ONNX model before importing it into N2D2.

With an INI file

It is possible to include an ONNX model inside a N2D2 INI file, as part of a
graph. This is particularly useful to add pre-processing and post-processing to
an existing ONNX model. Below is an example with the MobileNet ONNX model
provided by Google:

$BATCH_SIZE=256

DefaultModel=Frame_CUDA

; Database
[database]
Type=ILSVRC2012_Database
RandomPartitioning=0
Learn=1.0
BackgroundClass=1 ; Necessary for Google MobileNet pre-trained models

; Environment
[sp]
SizeX=224
SizeY=224
NbChannels=3
BatchSize=${BATCH_SIZE}

[sp.Transformation-1]
Type=RescaleTransformation
Width=256
Height=256

[sp.Transformation-2]
Type=PadCropTransformation
Width=224
Height=224

[sp.Transformation-3]
Type=ColorSpaceTransformation
ColorSpace=RGB

[sp.Transformation-4]
Type=RangeAffineTransformation
FirstOperator=Minus
FirstValue=127.5
SecondOperator=Divides
SecondValue=127.5

; Here, we insert an ONNX graph in the N2D2 flow the same way as a regular Cell
[onnx]
Input=sp
Type=ONNX
File=mobilenet_v1_1.0_224.onnx

; We can add targets to ONNX cells
[MobilenetV1/Predictions/Softmax:0.Target-Top5]
TopN=5

A N2D2 target must be associated to the output layer of the ONNX model in order
to compute the score in N2D2.

Note

The imported ONNX layer names in N2D2 is the name of their first output (
the operator “name” field is indeed optional in the ONNX standard).
You can easily find the ONNX cell names after running N2D2 or by opening
the ONNX graph in a graph viewer like NETRON
(https://lutzroeder.github.io/netron/).

Once the INI file including the ONNX model is ready, the following command must
be used to run N2D2 in test (inference) mode:

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -test

There required command line arguments for running INI files including ONNX model
are described above:

	Command line argument

	Description

	-seed 1

	Initial seed, necessary for test without learning before

	-w /dev/null

	No external weight loading: trained weight values are contained in the ONNX model

ONNX INI section type

The table below summarizes the parameters of an ONNX INI section. To declare an
ONNX section, the Type parameter must be equal to ONNX. The name of the
section can be arbitrary.

	Option [default value]

	Description

	Type=ONNX

	ONNX section type

	File

	Path to the ONNX file

	Ignore []

	Space-separated list of ONNX operators to ignore during import

	IgnoreInputSize [0]

	If true (1), the input size specified in the ONNX model is ignored and the N2D2 StimuliProvider size is used

	Transpose [0]

	If true (1), the first 2 dimensions are transposed in the whole ONNX graph (1D graph are first interpreted as 2D with the second dimension equal to 1)

Transpose option usage

The Transpose option allows to transpose the first two dimensions of a whole
graph. This can be used in practice to used transposed inputs (like a transposed
image, or a transposed vector for 1D signal inputs), like shown below:

[sp]
Size=8000 1 1
BatchSize=${BATCH_SIZE}

; Transpose the input:
[trans]
Input=sp
Type=Transpose
NbOutputs=1
Perm=1 0 2 3
; Output dimensions are now "1 8000 1 ${BATCH_SIZE}"

[onnx]
Input=trans
Type=ONNX
Transpose=1
; The graph originally expects an input dimension of "8000"
; After "Transpose=1", the expected input dimension becomes "1 8000"
File=sound_processing_graph.onnx

Supported operators

The table below summarizes the currently implemented ONNX operators:

	Operator

	Support

	Remarks

	Add

	

 Train from ONNX models

Train from ONNX models

The ONNX specification does not include any training parameter. To perform a
training on an imported ONNX model, it is possible to add the training elements
(solvers, learning rate scheduler…) on top of an ONNX model in N2D2, in the
INI file directly or using the Python API.

This is particularly useful to perform transfer learning from an existing ONNX
model trained on ImageNet for example.

With an INI file

We propose in this section to apply transfer learning to a MobileNet v1 ONNX
model. We assume that this model is obtained by converting the reference
pre-trained model from Google using the tools/mobilenet_v1_to_onnx.sh tool
provided in N2D2. The resulting model file name is therefore assumed to be
mobilenet_v1_1.0_224.onnx.

1) Remove the original classifier

The first step to perform transfer learning is to remove the existing classifier
from the ONNX model. To do so, one can simply use the Ignore parameter in
the ONNX INI section.

[onnx]
Input=sp
Type=ONNX
File=mobilenet_v1_1.0_224.onnx
; Remove the last layer and the softmax for transfer learning
Ignore=Conv__252:0 MobilenetV1/Predictions/Softmax:0

2) Add a new classifier to the ONNX model

The next step is to add a new classifier (fully connected layer with a softmax)
and connect it to the last layer in the ONNX model.

In order to properly handle graph dependencies, all the N2D2 layers connected
to a layer embedded in an ONNX model, must take the ONNX section name
(here onnx) as first input in the Input parameter. The actual inputs
are then added in the comma-separated list, which can mix ONNX and N2D2 layers.
In the example below, the average pooling layer from the ONNX model is connected
to the Fc cell:

; Here, we add our new layers for transfer learning
[fc]
; first input MUST BE "onnx"
; for proper dependency handling
Input=onnx,MobilenetV1/Logits/AvgPool_1a/AvgPool:0
Type=Fc
NbOutputs=100
ActivationFunction=Linear
WeightsFiller=XavierFiller
ConfigSection=common.config

[softmax]
Input=fc
Type=Softmax
NbOutputs=[fc]NbOutputs
WithLoss=1
[softmax.Target]

; Common config for static model
[common.config]
WeightsSolver.LearningRate=0.01
WeightsSolver.Momentum=0.9
WeightsSolver.Decay=0.0005
Solvers.LearningRatePolicy=StepDecay
Solvers.LearningRateStepSize=[sp]_EpochSize
Solvers.LearningRateDecay=0.993

As this new classifier must be trained, all the training parameter must be
specified as usual for this layer.

3) Fine tuning (optional)

If one wants to also fine-tune the existing ONNX layers, one must set the
solver configuration for the ONNX layers, using default configuration sections.

Default configuration sections applies to all the layers of the same type in the
ONNX model. For example, to add default parameters to all convolution layers
in the ONNX model loaded in a section of type ONNX named onnx,
just add a section named [onnx:Conv_def] in the INI file. The name of the
default section follows the convention [ONNXSection:N2D2CellType_def].

; Default section for ONNX Conv from section "onnx"
; "ConfigSection", solvers and fillers can be specified here...
[onnx:Conv_def]
ConfigSection=common.config

; Default section for ONNX Fc from section "onnx"
[onnx:Fc_def]
ConfigSection=common.config

; For BatchNorm, make sure the stats won't change if there is no fine-tuning
[onnx:BatchNorm_def]
ConfigSection=bn_notrain.config
[bn_notrain.config]
MovingAverageMomentum=0.0

Note

Important: make sure that the BatchNorm stats does not change if the
BatchNorm layer are not fine-tuned! This can be done by setting the
parameter MovingAverageMomentum to 0.0 for the layer than must not be
fine-tuned.

It is possible to add parameters for a specific ONNX layer by adding a section
with the ONNX layer named.

You can fine-tune the whole network or only some of its layers, usually the last
ones. To stop the fine-tuning at a specific layer, one can simply prevent the
gradient from back-propagating further. This can be achieved with the
BackPropagate=0 configuration parameter.

[Conv__250]
ConfigSection=common.config,notrain.config
[notrain.config]
BackPropagate=0

For the full configuration related to this example and more information, have a
look in models/MobileNet_v1_ONNX_transfer.ini.

With the Python API

Coming soon.

 Post-training quantization

Post-training quantization

Principle

The post-training quantization algorithm is done in 3 steps:

1) Weights normalization

All weights are rescaled in the range \([-1.0, 1.0]\).

	Per layer normalization
	There is a single weights scaling factor, global to the layer.

	Per layer and per output channel normalization
	There is a different weights scaling factor for each output channel. This allows
a finer grain quantization, with a better usage of the quantized range for some
output channels, at the expense of more factors to be saved in memory.

2) Activations normalization

Activations at each layer are rescaled in the range \([-1.0, 1.0]\) for signed
outputs and \([0.0, 1.0]\) for unsigned outputs.

The optimal quantization threshold value of the activation output of each
layer is determined using the validation dataset (or test dataset if no
validation dataset is available).

This is an iterative process: need to take into account previous layers
normalizing factors.

Finding the optimal quantization threshold value of the activation output of
each layer is done the following:

	Compute histogram of activation values;

	Find threshold that minimizes distance between original distribution and
clipped quantized distribution. Two distance algorithms can be used:

	Mean Squared Error (MSE);

	Kullback–Leibler divergence metric (KL-divergence).

Another, simpler method, is to just clip the values above a fixed quantile.

[image: Activation values histogram and corresponding thresholds.]

The obtained threshold value is therefore the activation scaling factor to be
taken into account during quantization.

3) Quantization

Inputs, weights, biases and activations are quantized to the desired
\(nbbits\) precision.

Convert ranges from \([-1.0, 1.0]\) and \([0.0, 1.0]\) to
\([-2^{nbbits-1}-1, 2^{nbbits-1}-1]\) and \([0, 2^{nbbits}-1]\) taking
into account all dependencies.

Additional optimization strategies

Weights clipping (optional)

Weights can be clipped using the same strategy than for the activations (
finding the optimal quantization threshold using the weights histogram).
However, this usually leads to worse results than no clipping.

Activation scaling factor approximation

The activation scaling factor \(\alpha\) can be approximated the following
ways:

	Fixed-point: \(\alpha\) is approximated by \(x 2^{-p}\);

	Single-shift: \(\alpha\) is approximated by \(2^{x}\);

	Double-shift: \(\alpha\) is approximated by \(2^{n} + 2^{m}\).

Usage in N2D2

All the post-training strategies described above are available in N2D2 for any
export type. To apply post-training quantization during export, simply use the
-calib command line argument.

The following parameters are available in command line:

	Argument [default value]

	Description

	-calib

	Number of stimuli used for the calibration (-1 = use the full validation dataset)

	-calib-reload

	Reload and reuse the data of a previous calibration

	-wt-clipping-mode [None]

	Weights clipping mode on export, can be None, MSE or KL-Divergence

	-act-clipping-mode [MSE]

	Activations clipping mode on export, can be None, MSE, KL-Divergence or Quantile

	-act-rescaling-mode [Single-shift]

	Activations scaling mode on export, can be Floating-point, Fixed-point16, Fixed-point32, Single-shift
or Double-shift

	-act-rescale-per-output [0]

	If true (1), rescale activation per output instead of per layer

	-act-quantile-value [0.9999]

	If activation clipping mode is Quantile, fraction of the values to keep without clipping

-act-rescaling-mode

The -act-rescaling-mode specifies how the activation scaling must be approximated,
for values other than Floating-point. This allows to avoid floating-point
operation altogether in the generated code, even for complex, multi-branches networks.
This is particularly useful on architectures without FPU or on FPGA.

For fixed-point scaling approximation (\(x 2^{-p}\)), two modes are available:
Fixed-point16 and Fixed-point32. Fixed-point16 specifies that \(x\)
must hold in at most 16-bits, whereas Fixed-point32 allows 32-bits \(x\).
In the later case, beware that overflow can occur on 32-bits only architectures
when computing the scaling multiplication before the right shift (\(p\)).

For the Single-shift and Double-shift modes, only right shifts are allowed
(scaling factor < 1.0). In case of layers with scaling factor above 1.0, Fixed-point16
is used as fallback for these layers.

Command line example

Command line example to run the C++ Export on a INI file containing an ONNX
model:

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export CPP -fuse -calib -1 -act-clipping-mode KL-Divergence

With the python API

Examples and results

Post-training quantization accuracy obtained with some models from the ONNX
Model Zoo are reported in the table below, using -calib 1000:

	ONNX Model Zoo model (specificities)

	FP acc.

	Fake 8 bits acc.

	8 bits acc.

	resnet18v1.onnx
(-no-unsigned -act-rescaling-mode Fixed-point)

	69.83%

	68.82%

	68.78%

	mobilenetv2-1.0.onnx
(mobilenetv20_output_flatten0_reshape0 ignored)

	70.95%

	65.40%

	65.40%

	mobilenetv2-1.0.onnx
(mobilenetv20_output_flatten0_reshape0 ignored
-act-rescaling-mode Fixed-point)

	
	66.67%

	66.70%

	squeezenet/model.onnx
(-no-unsigned -act-rescaling-mode Floating-point)

	57.58%

	57.11%

	54.98%

	FP acc. is the floating point accuracy obtained before post-training
quantization on the model imported in ONNX;

	Fake 8 bits acc. is the accuracy obtained after post-training quantization
in N2D2, in fake-quantized mode (the numbers are quantized but the
representation is still floating point);

	8 bits acc. is the accuracy obtained after post-training quantization in the
N2D2 reference C++ export, in actual 8 bits representation.

 Quantization-Aware Training

Quantization-Aware Training

Getting Started

N2D2 provides a complete design environement for a super wide range of quantization modes. Theses modes are implemented as a set of integrated highly modular blocks. N2D2 implements a per layer quantization scheme that can be different at
each level of the neural network. This high granularity enables to search for the best implementation depending on the
hardware constraints. Moreover to achieve the best performances, N2D2 implements the latest quantization methods currently at the best of the state-of-the-art, summarized in the figure below. Each dot represents one DNN (from the MobileNet or ResNet family), quantized with the number of bits indicated beside.

[image: QAT state-of-the-art.]

The user can leverage the high modularity of our super set of quantizer blocks and simply choose the method that best fits with the initial requirements, computation resources and time to market strategy.
For example to implement the LSQ method, one just need a limited number of training epochs to quantize a model
while implementing the SAT method requires a higher number of training epochs but gives today the best quantization performance.
In addition, the final objectives can be expressed in terms of different user requirements, depending on the compression capability of the targeted hardware.
Depending on these different objectives we can consider different quantization schemes:

	Weights-Only Quantization
	In this quantization scheme only weights are discretized to fit in a limited set of possible states. Activations
are not impacted.
Let’s say we want to evaluate the performances of our model with 3 bits weights for convolutions layers. N2D2 natively provides
the possibility to add a quantizer module, no need to import a new package or to modify any source code. We then
just need to specify QWeight type and QWeight.Range for step level discretization.

...
QWeight=SAT ; Quantization Method can be ``LSQ`` or ``SAT``
QWeight.Range=15 ; Range is set to ``15`` step level, can be represented as a 4-bits word
...

Example of fake-quantized weights on 4-bits / 15 levels:

[image: Weights Quantization in fake quantization on 15 levels.]

	Mixed Weights-Activations Quantization
	In this quantization scheme both activations and weights are quantized at different possible step levels. For layers that have a non-linear activation function and learnable parameters, such as Fc and Conv, we first specify QWeight in the same way as Weights-Only quantization mode.

Let’s say now that we want to evaluate the performances of our model with activations quantized to 3-bits.
In a similar manner, as for QWeight quantizer we specify the activation quantizer QAct for all layers that have a non-linear activation function. Where the method itself, here QAct=SAT ensures the non-linearity of the activation function.

...
ActivationFunction=Linear
QAct=SAT ; Quantization Method can be ``LSQ`` or ``SAT``
QAct.Range=7 ; Range is set to ``7`` step level, can be represented as a 3-bits word
...

Example of an activation feature map quantized in 4-bits / 15 levels:

[image: 4-bits Quantized Activation Feature Map .]

	Integer-Only Quantization
	Activations and weights are only represented as Integer during the learning phase, it’s one step beyond classical fake quantization !! In practice,
taking advantage of weight-only quantization scheme or fake quantization is clearly not obvious on hardware components. The Integer-Only
quantization mode is made to fill this void and enable to exploit QAT independently of the targeted hardware architecture. Most
common programmable architectures like CPU, GPU, DSP can implement it without additional burden.
In addition, hardware implementation like HLS or RTL description natively support low-precision integer operators.
In this mode, we replace the default quantization mode of the weights as follows :

...
QWeight.Mode=Integer ; Can be ``Default`` (fake-quantization) mode or ``Integer``(true integer) mode
...

Example of full integer weights on 4-bits / 15 levels:

[image: Weights Quantization in integer mode on 15 levels.]

Cell Quantizer Definition

N2D2 implements a cell quantizer block for discretizing weights and biases at training time. This cell quantizer block
is totally transparent for the user. The quantization phase of the learnable parameters requires intensive operation
to adapt the distribution of the full-precision weights and to adapt the gradient. In addition the implementation
can become highly memory greedy which can be a problem to train a complex model on a single GPU without specific treatment (gradient accumulation, etc..).
That is why N2D2 merged different operations under dedicated CUDA kernels or CPU kernels allowing efficient utilization
of available computation resources.

Overview of the cell quantizer implementation :

[image: Cell Quantizer Functional Block.]

The common set of parameters for any kind of Cell Quantizer.

	Option [default value]

	Description

	QWeight

	Quantization method can be SAT or LSQ.

	QWeight.Range [255]

	Range of Quantization, can be 1 for binary, 255 for 8-bits etc..

	QWeight.Solver [SGD]

	Type of the Solver for learnable quantization parameters, can be SGD or ADAM

	QWeight.Mode [Default]

	Type of quantization Mode, can be Default or Integer

LSQ

The Learned Step size Quantization method is tailored to learn the optimal quantization step size parameters in parallel with the network weights.
As described in [BLN+20], LSQ tries to estimate and scale the task loss gradient at each weight and activations layer’s quantizer step size,
such that it can be learned in conjunction with other network parameters. This method can be initialized using weights from a pre-trained
full precision model.

	Option [default value]

	Description

	QWeight.StepSize [100]

	Initial value of the learnable StepSize parameter

	QWeight.StepOptInitStepSize [true]

	If true initialize StepSize along first batch variance

SAT

Scale-Adjusted Training : [JYL19] method is one of the most promising solutions. The authors proposed SAT as a simple yet effective technique with which the rules of
efficient training are maintained so that performance can be boosted and low-precision models can even surpass their
full-precision counterparts in some cases. This method exploits DoReFa scheme for the weights quantization.

	Option [default value]

	Description

	QWeight.ApplyQuantization [true]

	Use true to enable quantization, if false parameters will be clamped between [-1.0,1.0]

	QWeight.ApplyScaling [false]

	Use true to scale the parameters as described in the SAT paper

Example of clamped weights when QWeight.ApplyQuantization=false:

[image: Weights Full-Precision clamped.]

Activation Quantizer Definition

N2D2 implements an activation quantizer block to discretize activation at training time. Activation quantizer block
is totally transparent for the user. Quantization phase of the activation requires intensive operation
to learn parameters that will rescale the histogram of full-precision activation at training time. In addition the implementation can become highly memory greedy which can be a problem to train a complex model on a single GPU without specific treatment (gradient accumulation etc..).
That why N2D2 merged different operations under dedicated CUDA kernels or CPU kernels allowing efficient utilization
of available computing resources.

Overview of the activation quantizer implementation:

[image: Activation Quantizer Functionnal Block.]

The common set of parameters for any kind of Activation Quantizer.

	Option [default value]

	Description

	QAct

	Quantization method can be SAT or LSQ.

	QAct.Range [255]

	Range of Quantization, can be 1 for binary, 255 for 8-bits etc..

	QAct.Solver [SGD]

	Type of the Solver for learnable quantization parameters, can be SGD or ADAM

LSQ

The Learned Step size Quantization method is tailored to learn the optimum quantization stepsize parameters in parallel to the network’s weights.
As described in [BLN+20], LSQ tries to estimate and scale the task loss gradient at each weight and activations layer’s quantizer step size,
such that it can be learned in conjunction with other network parameters. This method can be initialized using weights from a pre-trained full precision model.

	Option [default value]

	Description

	QAct.StepSize [100]

	Initial value of the learnable StepSize parameter

	QAct.StepOptInitStepSize [true]

	If true initialize StepSize following first batch variance

SAT

Scale-Adjusted Training : [JYL19] is one of the most promising solutions. The authors proposed SAT as a simple yet effective technique for which the rules of
efficient training are maintained so that performance can be boosted and low-precision models can even surpass their
full-precision counterparts in some cases.
This method exploits a CG-PACT scheme for the activations quantization which is a boosted version of PACT for low precision quantization.

	Option [default value]

	Description

	QAct.Alpha [8.0]

	Initial value of the learnable alpha parameter

Layer compatibility table

Here we describe the compatibility table as a function of the quantization mode. The column Cell indicates layers that have a full support
to quantize their learnable parameters during the training phase. The column Activation indicates layers that can support an activation quantizer to their
output feature map. An additional column Integer Core indicates layers that can be represented without any full-precision
operators at inference time. Of course it is necessary that their input comes from quantized activations.

	Layer
compatibility
table

	Quantization Mode

	Cell (parameters)

	Activation

	Integer Core

	Activation

	
	

 Pruning

Pruning

Getting Started

N2D2 provides a pruning module to perform pruning operations on your model in order to reduce its memory footprint.
The module works like the QAT module i.e. it is possible to carry out trainings with pruned weights in order to improve the performance of the network.
Only weights can be pruned so far.

Example with Python

Example of code to use the n2d2.quantizer.PruneCell in your scripts:

for cell in model:
 ### Add Pruning ###
 if isinstance(cell, n2d2.cells.Conv) or isinstance(cell, n2d2.cells.Fc):
 cell.quantizer = n2d2.quantizer.PruneCell(prune_mode="Static", threshold=0.3, prune_filler="IterNonStruct")

Some explanations with the differents options of the n2d2.quantizer.PruneCell :

Pruning mode

3 modes are possible:

	Identity: no pruning is applied to the cell

	Static: all weights of the cell are pruned to the requested threshold at initialization

	Gradual: the weights are pruned to the start threshold at initialization and at each update of the current threshold, it is increased by gamma until it reaches threshold. By default, the update is performed at the end of each epoch (possible to change it with stepsize)

Warning: if you use stepsize, please indicate the number of steps and not the number of epochs.
For example, to update each two epochs, write:

n2d2.quantizer.PruneCell(prune_mode="Gradual", threshold=0.3, stepsize=2*DATASET_SIZE)

Where DATASET_SIZE is the size of the dataset you are using.

Pruning filler

2 fillers are available to fill the masks:

	Random: The masks are filled randomly

	IterNonStruct: all weights below than the delta factor are pruned. If this is not enough to reach threshold, all the weights below 2 “delta” are pruned and so on…

Important: With n2d2.quantizer.PruneCell, quant_mode and range are not used.

Example with INI file

The common set of parameters for any kind of Prune Quantizer.

	Option [default value]

	Description

	QWeight

	Quantization / Pruning method, choose Prune to activate the Pruning mode.

	QWeight.PruningMode [Identity]

	Pruning mode, can be Identity, Static or Gradual

	QWeight.PruningFiller [Random]

	Pruning filler for the weights, can be Random, IterNonStruct or None

	QWeight.Threshold [0.2]

	Weight threshold to be pruned, 0.2 means 20% for example

	QWeight.Delta [0.001]

	Factor for iterative pruning, use it with IterNonStruct pruning filler

	QWeight.StartThreshold [0.1]

	Starting threshold, use it with Gradual pruning mode

	QWeight.StepSizeThreshold [0]

	Step size for the threshold update, use it with Gradual pruning mode

	QWeight.GammaThreshold [0.05]

	Value to add to current threshold during its update, use it with Gradual pruning mode

Example of code to use the Prune Quantizer in your scripts:

[conv1]
Input=sp
Type=Conv
KernelDims=5 5
NbOutputs=6
ActivationFunction=Rectifier
WeightsFiller=HeFiller
ConfigSection=common.config
QWeight=Prune
QWeight.PruningMode=Static
QWeight.PruningFiller=IterNonStruct
QWeight.Threshold=0.3
QWeight.StartThreshold=0.1
QWeight.GammaThreshold=0.1

All explanations in relation to the parameters of Prune Quantizer are provided in the python section of this page.

 Export: C++

Export: C++

	Export type: CPP
	C++ export using OpenMP.

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export CPP

Principle

The C++ export is the reference N2D2 export, which implements all the export
features available in N2D2, like post-training quantization or quantization
aware training.

Summary of the main features of a C++ export:

	Standalone C++11 compliant project;

	No C++ exception (often disabled on embedded code);

	No <stream> library (which is memory bloated).

	Fully templated compute kernels;

	Fully inlined compute kernels;

	No dynamic memory allocation;

	Memory alignment support;

	OpenMP parallelism.

	Data order
	The input of a layer is ordered by Height-Width-Channels (HWC) and the weights
of the kernel for a convolution by Output-Height-Width-Channels (OHWC). This order allows
us to do read kernel_width × nb_channels inputs and weights sequentially in memory to do the
necessary MACs.

	Templated layer parameters
	The current export uses C++ templates heavily, most of the
parameters of the layers are passed as template parameters. This allows the compiler to better
optimize the code and make it easier to unroll the loops. It comes at the cost of a larger compiled
binary.

	Force inline
	Most of the methods are forced to be inlined. As previously this increases the binary
size to provide a faster inference.

	Loop boundaries
	The boundaries of the loops are fixed at compile time through the template
parameters. If some steps in a loop must be skipped an if and continue are used inside the loop. It
results in better results than having variable loop boundaries.

Graph optimizations

	Weights are equalized between layers when possible;

	BatchNorm is automatically fused with the preceding Conv or Fc when possible;

	Padding layers are fused with Conv when possible;

	Dropout layers are removed.

Memory optimizations

In the C++ export, all the memory is allocated statically at compilation time.

The following memory optimization features are integrated in this export:

	Strided buffers: concatenation can be done directly in memory, no memory copy is needed;

	Memory wrapping: memory buffers are re-used when possible (memory wrapping or in-place).

For example, the memory mapping of each layer in a global memory space for
MobileNet v2 is shown below (generated automatically during an export):

[image: Example of memory mapping for MobileNet v2.]

In this example, the largest layer memory buffer overlaps with the memory
buffer of the preceding layer thanks to the OptimizeBufferMemory option
(see the next section).

Export parameters

Extra parameters can be passed during export using the
-export-parameters params.ini command line argument. The parameters must be
saved in an INI-like file.

List of available parameters:

	Argument [default value]

	Description

	IncludeInputInBuffer [1]

	If true (1), include the input buffer in the memory mapping

	OptimizeBufferMemory [1]

	If true (1), try to re-use memory spaces using wrapping and in-place

	OptimizeNoBranchConcat [1]

	If true (1), concatenation is done directly in memory when possible

	MemoryAlignment [1]

	Default memory alignment (in bytes)

	MemoryManagerStrategy [OptimizeMaxLifetimeMaxSizeFirst]

	Optimization strategy for static memory allocation

Example

n2d2 MobileNet_ONNX.ini -seed 1 -w weights_validation -export CPP -fuse -nbbits 8 -calib -1 -db-export 100 -test

This command generates a C++ project in the sub-directory export_CPP_int8.
This project is ready to be compiled with a Makefile.

Note

The Softmax layer is not supported by the C++ export and must be removed
before export, as it is not compatible with low precision integer computing.

 Export: C++/STM32

Export: C++/STM32

	Export type: CPP_STM32
	C++ export for STM32.

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export CPP_STM32

Principle

This export inherit the properties and optimizations from the C++ export, but
includes optimized kernels for the Cortex-M4 and the Cortex-M7. Please refer
to the Export: C++ for the available export parameters.

	SIMD
	The SMLAD intrinsic is used to do two 16-bit signed integers multiplications with
accumulation. To extend the 8-bit data to the necessary 16-bit, the XTB16 intrinsic is used.

	Loop unrolling
	The unrolling of the loops can be done with #pragma GCC unroll NB_ITERATIONS
but it does not always perform as well as expected. Some loops are manually unrolled instead using C++
templates. This increases the size of the compiled binary further but it provides a faster inference.

	Usage of intrinsics
	Intrinsics provided by ARM are preferred to normal library methods calls
when possible. For example the SSAT and USAT intrinsics are used to clamp the output value resulting
in better results than a naive call to the std::clamp method.

Usage

n2d2 MobileNet_ONNX.ini -seed 1 -w weights_validation -export CPP_STM32 -fuse -nbbits 8 -calib -1 -db-export 100 -test

This command generates a C++ project in the sub-directory export_CPP_STM32_int8.
This project is ready to be cross-compiled with a Makefile, using the
GNU Arm Embedded Toolchain (which provides the arm-none-eabi-gcc compiler).

	make
	To cross-compile the project using the GNU Arm Embedded Toolchain. An ELF
binary file is generated in bin/n2d2_stm32.elf.

	make flash
	To flash the board using OpenOCD with the previously generated bin/n2d2_stm32.elf binary. In the
provided Makefile, the default OpenOCD location is /usr/local/bin/openocd
and the default script is stm32h7x3i_eval.cfg, for the STM32H7x3I evaluation
board family. These can be changed in the first lines of the Makefile.

 Export: TensorRT

Export: TensorRT

Export type: CPP_TensorRT

C++ export using TensorRT.

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export CPP_TensorRT -nbbits -32

Warning

The calibration for this export is done using the tools provided by NVIDIA. For this reason, you cannot calibrate when exporting your network.
You need to use the export to calibrate your network.

Informations

In order to exploit TensorRT optimizations, the N2D2 Framework provide a code generator linked with a C++/Python API
that gives access to TensorRT methods, I/O handling and specifics control.
The generated code is provided as a standalone code with its own compilation environment under a Makefile format. Moreover
a benchmark environment with stimuli from the test dataset is given to evaluates execution time performances of your model.

This allow a low level of dependency, only TensorRT, CUDA, cuDNN, cuBLAS and GCC are needed.
We recommended you to ensure the correct compatibility of your installation by referring to the TensorRT archive page:
https://docs.nvidia.com/deeplearning/tensorrt/archives/index.html
Follow the support matrix section of your TensorRT version, notice that TensorRT export
have been tested from TensorRT 2.1 to TensorRT 8.2.3 versions.

The TensorRT library includes implementation for the most common deep learning layers, but strong limitations
are known depending of the TensorRT version. For example, TensorRT provide a support to the well-known resize layer since version 6.0.1.
This layer is widely use for decoder, segmentation and detector tasks. For inferior version a support have been integrated under a plugin
layer. The TensorRT plugin layers allow the application to implement not supported layers.
You can find additional informations about how to implements new plugin layers here :
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#add_custom_layer

The plugin layers that N2D2 TensorRT generator implements are available in the folder export/CPP_TensorRT/include/plugins/. These layers are
used by the N2D2 TensorRT generator when TensorRT doesn’t provide support to a requested layers.

Export parameters

Extra parameters can be passed during export using the
-export-parameters params.ini command line argument. The parameters must be
saved in an INI-like file.

List of available parameters:

	Argument [default value]

	Description

	GenStimuliCalib [1]

	If true (1), generate calibration files, necessary for 8-bits precision.
Beware that calibration files may take a lot of disk space!

Benchmark your TensorRT Model - C++ Benchmark

The TensorRT export is given with a C++ benchmark ready to be used. The benchmark program is able to evaluates the applicative performances
of your model on the test dataset exported under the stimuli folder at export time. A per-layer execution time analysis is also performed
to evaluates your mode latency and identify potential bottleneck.
Moreover different numerical precision supporter by NVIDIA GPU can be evaluates in order to assess potential acceleration factor and eventual
applicative performances losses.

When numerical precision is set to 8 bits for benchmark, the program will use the calibration files exported under the batches_calib folder
at export time. The calibration files also corresponds to the test stimuli pre-processes for the IInt8EntropyCalibrator2 that implement TensorRT.
You can find more informations about the INT8 calibration procedure with TensorRT here :
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#optimizing_int8_c

The command to compile and execute the C++ TensorRT Benchmark under a FP32 precision is :

make
cd export_CPP_TensorRT_float32/
./bin/n2d2_tensorRT_test -nbbits -32

To launch the Benchmark in FP16 (half precision) use this command :

./bin/n2d2_tensorRT_test -nbbits -16

To launch the Benchmark in INT8 use this command :

./bin/n2d2_tensorRT_test -nbbits 8

List of the program option related to the TensorRT C++ benchmark:

	Option [default value]

	Description

	-batch [1]

	Size of the batch to use

	-dev [0]

	CUDA Device ID selection

	-stimulus [NULL]

	Path to a specific input stimulus to test. For example: -stimulus \({/stimulus/env0000.pgm}\) command will test the file env0000.pgm of the stimulus folder.

	-prof

	Activates the layer wise profiling mechanism. This option can decrease execution time performance.

	-iter-build [1]

	Sets the number of minimization build iterations done by the tensorRT builder to find the best layer tactics.

	-nbbits [-32]

	Number of bits used for computation. Value -32 for Full FP32 bits configuration, -16 for Half FP16 bits configuration and 8 for INT8 bits configuration. When running INT8 mode for the first time, the TensorRT calibration process can be very long. Once generated the generated calibration table will be automatically reused. Supported compute mode in function of the compute capability are provided here: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities .

	-calib-cache

	Path and name to the calibration file generated by TensorRT calibrator when precision is INT8. Must be compatible with the TensorRT Entropy Calibrator version used to calibrate.

	-calib-folder [batches_calib]

	Path to the calibration data samples. This is mandatory when precision is set to INT8 and if no calibration file cache is load.

Analyse the execution performances of your TensorRT Model (FP32)

Here is a small example that described how to report the per-layer analysis on execution time.

Launch the Benchmark with the -prof argument :

./bin/n2d2_tensorRT_test -prof

At the end of the execution the performances analysis is displayed in your screen :

(19%) ** CONV1 + CONV1_ACTIVATION: 0.0219467 ms
(05%) ************ POOL1: 0.00675573 ms
(13%) **************************** CONV2 + CONV2_ACTIVATION: 0.0159089 ms
(05%) ************ POOL2: 0.00616047 ms
(14%) ****************************** CONV3 + CONV3_ACTIVATION: 0.0159713 ms
(19%) ** FC1 + FC1_ACTIVATION: 0.0222242 ms
(13%) **************************** FC2: 0.0149013 ms
(08%) ****************** SOFTMAX: 0.0100633 ms
Average profiled tensorRT process time per stimulus = 0.113932 ms

You can evaluates impact of the performances for various batch size and the different numerical precision supported.

Deploy your TensorRT Model in Application

The TensorRT export is provided with a C++ and a python interface. The python interface is accessible through a wrapper
to the C++ API method and linked with the libboost-python librabry.

You can integrates your model in your application environment as a library thanks to this API.

The command to compile the TensorRT export as a C++ library is :

make WRAPPER_CPP=1

The library of your TensorRT model is provided under the name libn2d2_tensorRT_inference.so locate at bin/ folder.

The command to compile your TensorRT export as a Python3.6m library is :

make WRAPPER_PYTHON=3.6m

The python library of your TensorRT model is then provided under the name N2D2.so locate at bin/ folder.

Method accessible through C++ or Python API are listed and detailled here:

	Return Type

	C++ API

	Python API

	Args Type

	ArgsName(Default Value)

	Description

	Comments

	
	N2D2::Network()

	N2D2_Network()

	
	
	TensorRT DNN object creation

	

	void

	setMaxBatchSize

	setMaxBatchSize

	size_t

	batchsize(1)

	Maximum batchsize for setting the internal tensorrt graph memory usage limit

	Use before run initialize()

	void

	setDeviceID

	setDeviceID

	size_t

	device(0)

	Device ID on which run the TensorRT model

	Use before run initialize()

	void

	setPrecision

	setPrecision

	int

	precision(-32)

	Numerical Precision to use: -32 for float, -16 for half float, 8 for int8

	Use before run initialize()

	void

	useDLA

	useDLA

	bool

	useDla(False)

	If True, use the first DLA core for every possible layers

	Use before run initialize()

	void

	setMaxWorkSpaceSize

	setMaxWorkSpaceSize

	int64_t

	maxWorkSpaceSize(1073741824)

	Size of the workspace, influence the optimisations done by NVIDIA

	Use before run initialize()

	void

	setDetectorThresholds

	setDetectorThresholds

	float*, uint

	thresholds, lengthThreshold

	Set the confidences thresholds of a detector output. Bypass the internal thresholds from the exported model

	Use before run initialize()

	void

	setDetectorNMS

	setDetectorNMS

	double

	thresholdNms

	Set the threshold for non-maxima suppression range (from 0.0 to 1.0) of a detector output. Bypass the internal thresholds from the exported model

	Use before run initialize()

	void

	setInputEngine

	setInputEngine

	string

	enginePath

	Path of a serialized and optimized TensorRT plan file. The serialized plan file are not portable across platforms or TensorRT versions and are specific to the exact GPU model they were built on

	Use before run initialize()

	void

	setOutputEngine

	setOutputEngine

	string

	enginePath

	Path and name of where to save your serialized plan file. The serialized plan file are not portable across platforms or TensorRT versions and are specific to the exact GPU model they were built on

	Use before run initialize()

	void

	setCalibCache

	setCalibCache

	string

	calibPath

	Path and name to the calibration file generated by TensorRT calibrator when precision is INT8. Must be compatible with the TensorRT version used to calibrate.

	Use before run initialize()

	void

	setCalibFolder

	setCalibFolder

	string

	folderPath(batches_calib/)

	Path to the calibration data samples. This is mandatory when precision is set to INT8 and if no calibration file cache is load.

	Use before run initialize()

	void

	setParamPath

	setParamPath

	string

	parmPath(dnn/)

	Path to the DNN parameters generated by N2D2

	Use before run initialize()

	void

	initialize

	initialize

	
	
	Initialize the TensorRT engine following the specified options. This function allocates the memory workspace I/O, set the precision, create the builder, create the network topology from the Network generated with N2D2 and initialize the TensorRT context

	

	void

	setProfiling

	setProfiling

	
	
	Initialize the profiler in the TensorRT engine

	Use after run initialize()

	uint

	getInputDimX

	getInputDimX

	
	
	Return the dimension X of the input

	

	uint

	getInputDimY

	getInputDimY

	
	
	Return the dimension Y of the input

	

	uint

	getInputDimZ

	getInputDimZ

	
	
	Return the dimension Z of the input

	

	uint

	getOutputNbTargets

	getOutputNbTargets

	
	
	Return the number of outputs

	

	uint

	getOutputDimX

	getOutputDimX

	uint

	outputNumber

	Return the dimension X of a specified output

	

	uint

	getOutputDimY

	getOutputDimY

	uint

	outputNumber

	Return the dimension Y of a specified output

	

	uint

	getOutputDimZ

	getOutputDimZ

	uint

	outputNumber

	Return the dimension Z of a specified output

	

	uint

	getOutputTarget

	getOutputTarget

	uint

	outputNumber

	Return the number of labels if a specified output

	

	void

	syncExe

	syncExe

	float*, uint

	inputData,batchsize

	Synchronously execute inference on a batch of the specified size

	Use after run initialize()

	void

	log_output

	cpyOutput

	float*, uint

	inputData,outputID

	Copy the full batch of the output of a DNN

	Use after run initialize()

	void

	estimated

	estimated

	float*, uint,
bool, float

	inputData,outputID, useGPU, threshold

	Copy per output pixel estimated labels of a specified output. UseGpu is recommended and threshold value allow to clip the outputs values before classification

	Use after run initialize()

 Export: DNeuro

Export: DNeuro

N2D2-IP only: available upon request.

	Export type: DNeuro_V2
	DNeuro RTL export for FPGA.

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export DNeuro_V2

Introduction

DNeuro is a synthetizable dataflow architecture, optimized for deep
convolutional neural networks (CNN). It allows a fine grain allocation
control of the DSP and memory resources, for each layer in a network.
Globally, the FPGA resource usage can be maximized for a given network
topology in order to minimize its latency.

The main features of the DNeuro are:

	Data flow architecture requiring few memory (potentially no DDR);

	Very high use rate of the DSP per cycle (> 90%);

	Configurable precision (integers from 2 to 16 bits, typically 8 bits);

	Up to 4 MAC/DSP operations per cycle.

The DNeuro is composed of specialized computing blocs, corresponding to
specific type and configuration of layers (convolution, max pooling…),
that can be chained to form a full neural network. The bloc allocation
and chaining is done automatically with N2D2.

Interface

The DNeuro interface is extremely simple and behaves like a
pipeline/FIFO.

An example of the top-level DNeuro RTL entity is described below, for
one input channel and 3 output channels:

-- Input size: 1*640*480
-- Output size: 3*80*60
entity network is
generic (
 constant G_BATCH_SIZE: positive := 1;
 constant G_FIFO_DEPTH: positive := 1;
 constant G_DATA_LENGTH: positive := 8;
 constant G_ACC_S_LENGTH: positive := 18;
 constant G_NB_OUTPUTS_INST_N_1_ENV: positive := 1;
 constant G_NB_OUTPUTS_MERG_N_1_ENV: positive := 1
);
port (
 clk : in std_logic;
 rstn : in std_logic;
 i_data : in std_logic_vector ((G_DATA_LENGTH*G_BATCH_SIZE)-1 downto 0);
 i_valid_data : in std_logic;
 o_en : out std_logic;
 o_data : out std_logic_vector ((3*G_DATA_LENGTH*G_BATCH_SIZE)-1 downto 0);
 o_valid_data : out std_logic;
 i_en : in std_logic
);
end network;

Supported layers

	Layer type

	Support

	Comments

	Dropout

	n.a.

	removed during export

	Fc

	

 Export: ONNX

Export: ONNX

	Export type: ONNX
	ONNX export.

n2d2 MobileNet_ONNX.ini -seed 1 -w /dev/null -export ONNX

Principle

The ONNX export allows you to generate an ONNX model from a N2D2 model. The
generated ONNX model is optimized for inference and can be quantized beforehand
with either post-training quantization or Quantization Aware Training (QAT).

Graph optimizations

	Weights are equalized between layers when possible;

	BatchNorm is automatically fused with the preceding Conv or Fc when possible;

	Padding layers are fused with Conv when possible;

	Dropout layers are removed.

Export parameters

Extra parameters can be passed during export using the
-export-parameters params.ini command line argument. The parameters must be
saved in an INI-like file.

List of available parameters:

	Argument [default value]

	Description

	ImplicitCasting [0]

	If true (1), casting in the graph is implicit and Cast ONNX operators are not inserted

	FakeQuantization [0]

	If true (1), the graph is fake quantized, meaning floating-point ONNX operators are used for the computation

The parameters ImplicitCasting and FakeQuantization are useful only for
quantized networks. In this case, a full integer ONNX graph is generated when
possible, notably using the ONNX ConvInteger and MatMulInteger when
-nbbits is ≤ 8 bits. An example of generated graph is shown below, with a
Single-shift activation rescaling mode (-act-rescaling-mode, see
Post-training quantization):

[image: Example of fully integer, quantized, exported ONNX graph.]
By default, strict adherence to the ONNX standard is enforced, by adding
explicit Cast operators when required. The automatic insertion of Cast
operators can be disabled by setting the ImplicitCasting export parameter
to true. This results in the simplified graph below:

[image: Example of fully integer, quantized, exported ONNX graph without ``Cast`` operators (with ``ImplicitCasting`` set to 1).]
The FakeQuantization parameter allows to export a quantized network using
fake quantization, meaning the parameters of the network are quantized (integer)
but their representation remains in floating-point and the computation is done
with floating-point operators. However, the output values of the network
should be almost identical to when the computation is done in integer. The
differences are due to numerical errors as all integers cannot be represented
exactly with floating-point.

[image: Example of fully integer, quantized, exported ONNX graph with fake quantization (``FakeQuantization`` set to 1).]

Note

The FakeQuantization, when set, implies ImplicitCasting, as no
casting operator is required in a fully floating-point graph.

Example

n2d2 MobileNet_ONNX.ini -seed 1 -w weights_validation -export ONNX -nbbits 8 -calib -1 -db-export 100 -test

This command generates a 8-bits integer quantized ONNX model in the sub-directory
export_ONNX_int8.

 Export: other / legacy

Export: other / legacy

n2d2 "mnist24_16c4s2_24c5s2_150_10.ini" -export CPP_OpenCL

Export types:

	C C export using OpenMP;

	C_HLS C export tailored for HLS with Vivado HLS;

	CPP_OpenCL C++ export using OpenCL;

	CPP_Cuda C++ export using Cuda;

	CPP_cuDNN C++ export using cuDNN;

	SC_Spike SystemC spike export.

Other program options related to the exports:

	Option [default value]

	Description

	-nbbits [8]

	Number of bits for the weights and signals. Must be 8, 16, 32 or 64 for integer export, or -32, -64 for floating point export. The number of bits can be arbitrary for the C_HLS export (for example, 6 bits). It must be -32 for the CPP_TensorRT export, the precision is directly set at runtime

	-calib [0]

	Number of stimuli used for the calibration. 0 = no calibration (default), -1 = use the full test dataset for calibration

	-calib-passes [2]

	Number of KL passes for determining the layer output values distribution truncation threshold (0 = use the max. value, no truncation)

	-no-unsigned

	If present, disable the use of unsigned data type in integer exports

	-db-export [-1]

	Max. number of stimuli to export (0 = no dataset export, -1 = unlimited)

C export

Test the exported network:

cd export_C_int8
make
./bin/n2d2_test

The result should look like:

...
1652.00/1762 (avg = 93.757094%)
1653.00/1763 (avg = 93.760635%)
1654.00/1764 (avg = 93.764172%)
Tested 1764 stimuli
Success rate = 93.764172%
Process time per stimulus = 187.548186 us (12 threads)

Confusion matrix:

| T \ E | 0 | 1 | 2 | 3 |

0	329	1	5	2
	97.63%	0.30%	1.48%	0.59%
1	0	692	2	6
	0.00%	98.86%	0.29%	0.86%
2	11	27	609	55
	1.57%	3.85%	86.75%	7.83%
3	0	0	1	24
	0.00%	0.00%	4.00%	96.00%

T: Target E: Estimated

CPP_OpenCL export

The OpenCL export can run the generated program in GPU or CPU
architectures. Compilation features:

	Preprocessor command [default value]

	Description

	PROFILING [0]

	Compile the binary with a synchronization between each layers and return the mean execution time of each layer. This preprocessor option can decrease performances.

	GENERATE_KBIN [0]

	Generate the binary output of the OpenCL kernel .cl file use. The binary is store in the /bin folder.

	LOAD_KBIN [0]

	Indicate to the program to load an OpenCL kernel as a binary from the /bin folder instead of a .cl file.

	CUDA [0]

	Use the CUDA OpenCL SDK locate at \({/usr/local/cuda}\)

	MALI [0]

	Use the MALI OpenCL SDK locate at \({/usr/Mali_OpenCL_SDK_vXXX}\)

	INTEL [0]

	Use the INTEL OpenCL SDK locate at \({/opt/intel/opencl}\)

	AMD [1]

	Use the AMD OpenCL SDK locate at \({/opt/AMDAPPSDK-XXX}\)

Program options related to the OpenCL export:

	Option [default value]

	Description

	-cpu

	If present, force to use a CPU architecture to run the program

	-gpu

	If present, force to use a GPU architecture to run the program

	-batch [1]

	Size of the batch to use

	-stimulus [NULL]

	Path to a specific input stimulus to test. For example: -stimulus \({/stimulus/env0000.pgm}\) command will test the file env0000.pgm of the stimulus folder.

Test the exported network:

cd export_CPP_OpenCL_float32
make
./bin/n2d2_opencl_test -gpu

CPP_cuDNN export

The cuDNN export can run the generated program in NVIDIA GPU
architecture. It use CUDA and cuDNN library. Compilation features:

	Preprocessor command [default value]

	Description

	PROFILING [0]

	Compile the binary with a synchronization between each layers and return the mean execution time of each layer. This preprocessor option can decrease performances.

	ARCH32 [0]

	Compile the binary with the 32-bits architecture compatibility.

Program options related to the cuDNN export:

	Option [default value]

	Description

	-batch [1]

	Size of the batch to use

	-dev [0]

	CUDA Device ID selection

	-stimulus [NULL]

	Path to a specific input stimulus to test. For example: -stimulus \({/stimulus/env0000.pgm}\) command will test the file env0000.pgm of the stimulus folder.

Test the exported network:

cd export_CPP_cuDNN_float32
make
./bin/n2d2_cudnn_test

C_HLS export

Test the exported network:

cd export_C_HLS_int8
make
./bin/n2d2_test

Run the High-Level Synthesis (HLS) with Xilinx Vivado HLS:

vivado_hls -f run_hls.tcl

Layer compatibility table

Layer compatibility table in function of the export type:

	Layer
compatibility
table

	Export type

	C

	C_HLS

	CPP_OpenCL

	CPP_TensorRT

	Conv

	

 Introduction

Introduction

The INI file interface is the primary way of using N2D2. It is a simple,
lightweight and user-friendly format for specifying a complete DNN-based
application, including dataset instanciation, data pre-processing,
neural network layers instanciation and post-processing, with all its
hyperparameters.

Syntax

INI files are simple text files with a basic structure composed of
sections, properties and values.

Properties

The basic element contained in an INI file is the property. Every
property has a name and a value, delimited by an equals sign (=). The
name appears to the left of the equals sign.

name=value

Sections

Properties may be grouped into arbitrarily named sections. The section
name appears on a line by itself, in square brackets ([and]). All
properties after the section declaration are associated with that
section. There is no explicit “end of section” delimiter; sections end
at the next section declaration, or the end of the file. Sections may
not be nested.

[section]
a=a
b=b

Case sensitivity

Section and property names are case sensitive.

Comments

Semicolons (;) or number sign (#) at the beginning or in the
middle of the line indicate a comment. Comments are ignored.

; comment text
a=a # comment text
a="a ; not a comment" ; comment text

Quoted values

Values can be quoted, using double quotes. This allows for explicit
declaration of whitespace, and/or for quoting of special characters
(equals, semicolon, etc.).

Whitespace

Leading and trailing whitespace on a line are ignored.

Escape characters

A backslash (\) followed immediately by EOL (end-of-line) causes the
line break to be ignored.

Template inclusion syntax

Is is possible to recursively include templated INI files. For example,
the main INI file can include a templated file like the following:

[inception@inception_model.ini.tpl]
INPUT=layer_x
SIZE=32
ARRAY=2 ; Must be the number of elements in the array
ARRAY[0].P1=Conv
ARRAY[0].P2=32
ARRAY[1].P1=Pool
ARRAY[1].P2=64

If the inception_model.ini.tpl template file content is:

[{{SECTION_NAME}}_layer1]
Input={{INPUT}}
Type=Conv
NbOutputs={{SIZE}}

[{{SECTION_NAME}}_layer2]
Input={{SECTION_NAME}}_layer1
Type=Fc
NbOutputs={{SIZE}}

{% block ARRAY %}
[{{SECTION_NAME}}_array{{#}}]
Prop1=Config{{.P1}}
Prop2={{.P2}}
{% endblock %}

The resulting equivalent content for the main INI file will be:

[inception_layer1]
Input=layer_x
Type=Conv
NbOutputs=32

[inception_layer2]
Input=inception_layer1
Type=Fc
NbOutputs=32

[inception_array0]
Prop1=ConfigConv
Prop2=32

[inception_array1]
Prop1=ConfigPool
Prop2=64

The SECTION_NAME template parameter is automatically generated from
the name of the including section (before @).

Variable substitution

{{VAR}} is replaced by the value of the VAR template parameter.

Control statements

Control statements are between {% and %} delimiters.

block

{% block ARRAY %} … {% endblock %}

The # template parameter is automatically generated from the
{% block ... %} template control statement and corresponds to the
current item position, starting from 0.

for

{% for VAR in range([START,]END]) %} … {% endfor %}

If START is not specified, the loop begins at 0 (first value of
VAR). The last value of VAR is END-1.

if

{% if VAR OP [VALUE] %} … [{% else %}] …
{% endif %}

OP may be ==, !=, exists or not_exists.

include

{% include FILENAME %}

Global parameters

	Option [default value]

	Description

	DefaultModel [Transcode]

	Default layers model. Can be Frame, Frame_CUDA, Transcode or Spike

	DefaultDataType [Float32]

	Default layers data type. Can be Float16, Float32 or Float64

	InsertBatchNormAfterConv [0]

	If true (1), batch normalization is automatically inserted after each convolution
when not already present

 Databases

Databases

Introduction

A Database handles the raw data, annotations and how the datasets
(learn, validation or test) should be build.
N2D2 integrates pre-defined modules for several well-known database
used in the deep learning community, such as MNIST, GTSRB, CIFAR10 and
so on. That way, no extra step is necessary to be able to directly build
a network and learn it on these database.

All the database modules inherit from a base Database, which contains some
generic configuration options:

	Option [default value]

	Description

	DefaultLabel []

	Default label for composite image (for areas outside the ROIs).
If empty, no default label is created and default label ID is -1

	ROIsMargin [0]

	Margin around the ROIs, in pixels, with no label (label ID = -1)

	RandomPartitioning
[1]

	If true (1), the partitioning in the learn, validation and test
sets is random, otherwise partitioning is in the order

	DataFileLabel [1]

	If true (1), load pixel-wise image labels, if they exist

	CompositeLabel
[Auto]

	See the following CompositeLabel section

	TargetDataPath []

	Data path to target data, to be used in conjunction with the
DataAsTarget option in Target modules

	MultiChannelMatch []

	See the following multi-channel handling section

	MultiChannelReplace

	See the following multi-channel handling section

CompositeLabel parameter

A label is said to be composite when it is not a single labelID for the
stimulus (the stimulus label is a matrix of size > 1).
For the same stimulus, different type of labels can be specified,
i.e. the labelID, pixel-wise data and/or ROIs.
The way these different label types are handled is configured with the
CompositeLabel parameter:

	None: only the labelID is used, pixel-wise data are ignored and ROIs
are loaded but ignored as well by loadStimulusLabelsData().

	Auto: the label is only composite when pixel-wise data are present
or the stimulus labelID is -1 (in which case the DefaultLabel
is used for the whole label matrix). If the label is composite
ROIs, if present, are applied. Otherwise, a single ROI is
allowed and is automatically extracted when fetching the stimulus.

	Default: the label is always composite. The labelID is ignored.
If there is no pixel-wise data, the DefaultLabel is used.
ROIs, if present, are applied.

	Disjoint: the label is always composite. If there is no pixel-wise data:

	the labelID is used if there is no ROI;

	the DefaultLabel is used if there is any ROI.

ROIs, if present, are applied.

	Combine: the label is always composite.
If there is no pixel-wise data, the labelID is used.
ROIs, if present, are applied.

Multi-channel handling

Multi-channel images are automatically handled and the default image format in
N2D2 is BGR.

Any Database can also handle multi-channel data, where each channel is stored
in a different file. In order to be able to interpret a series of files as an
additional data channel to a first series of files, the file names must follow
a simple yet arbitrary naming convention. A first parameter,
MultiChannelMatch, is used to match the files constituting a single
channel. Then, a second parameter, MultiChannelReplace is used to indicate
how the file names of the other channels are obtained. See the example below,
with the DIR_Database:

[database]
Type=DIR_Database
...
; Multi-channel handling:
; MultiChannelMatch is a regular expression for matching a single channel (for example the first one).
; Here we match anything followed by "_0", followed by "." and anything except
; ".", so we match "_0" before the file extension.
MultiChannelMatch=(.*)_0(\.[^.]+)
; Replace what we matched to obtain the file name of the different channels.
; For the first channel, replace "_0" by "_0", so the name doesn't change.
; For the second channel, replace "_0" by "_1" in the file name.
; To disable the second channel, replace $1_1$2 by ""
MultiChannelReplace=$1_0$2 $1_1$2

Note that when MultiChannelMatch is not empty, only files matching this parameter
regexp pattern (and the associated channels obtained with MultiChannelReplace,
when they exist) will be loaded. Other files in the dataset not matching the
MultiChannelMatch filter will be ignored.

Stimuli are loaded even if some channels are missing (in which case, “Notice”
messages are issued for the missing channel(s) during database loading). Missing
channel values are set to 0.

Annotations are common to all channels. If annotations exist for a specific channel,
they are fused with the annotations of the other channels (for geometric annotations).
Pixel-wise annotations, obtained when DataFileLabel is 1 (true), through
the Database::readLabel() virtual method, are only read for the match
(MultiChannelMatch) channel.

MNIST

MNIST [LBBH98] is already fractionned into a
learning set and a testing set, with:

	60,000 digits in the learning set;

	10,000 digits in the testing set.

Example:

[database]
Type=MNIST_IDX_Database
Validation=0.2 ; Fraction of learning stimuli used for the validation [default: 0.0]

	Option [default value]

	Description

	Validation [0.0]

	Fraction of the learning set used for validation

	DataPath

	Path to the database

	[$N2D2_DATA/mnist]

	

GTSRB

GTSRB [SSSI12] is already fractionned into a
learning set and a testing set, with:

	39,209 digits in the learning set;

	12,630 digits in the testing set.

Example:

[database]
Type=GTSRB_DIR_Database
Validation=0.2 ; Fraction of learning stimuli used for the validation [default: 0.0]

	Option [default value]

	Description

	Validation [0.0]

	Fraction of the learning set used for validation

	DataPath

	Path to the database

	[$N2D2_DATA/GTSRB]

	

Directory

Hand made database stored in files directories are directly supported
with the DIR_Database module. For example, suppose your database is
organized as following (in the path specified in the N2D2_DATA
environment variable):

	GST/airplanes: 800 images

	GST/car_side: 123 images

	GST/Faces: 435 images

	GST/Motorbikes: 798 images

You can then instanciate this database as input of your neural network
using the following parameters:

[database]
Type=DIR_Database
DataPath=${N2D2_DATA}/GST
Learn=0.4 ; 40% of images of the smallest category = 49 (0.4x123) images for each category will be used for learning
Validation=0.2 ; 20% of images of the smallest category = 25 (0.2x123) images for each category will be used for validation
; the remaining images will be used for testing

Each subdirectory will be treated as a different label, so there will be
4 different labels, named after the directory name.

The stimuli are equi-partitioned for the learning set and the validation
set, meaning that the same number of stimuli for each category is used.
If the learn fraction is 0.4 and the validation fraction is 0.2, as in
the example above, the partitioning will be the following:

	Label ID

	Label name

	Learn set

	Validation set

	Test set

	[0.5ex] 0

	airplanes

	49

	25

	726

	1

	car_side

	49

	25

	49

	2

	Faces

	49

	25

	361

	3

	Motorbikes

	49

	25

	724

	
	Total:

	196

	100

	1860

Mandatory option

	Option [default value]

	Description

	DataPath

	Path to the root stimuli directory

	IgnoreMasks

	Space-separated list of mask strings to ignore. If any is present in a file path, the file gets ignored. The usual * and + wildcards are allowed.

	Learn

	If PerLabelPartitioning is true, fraction of images used for the learning; else, number of images used for the learning, regardless of their labels

	LoadInMemory [0]

	Load the whole database into memory

	Depth [1]

	Number of sub-directory levels to include. Examples:

	
	Depth = 0: load stimuli only from the current directory (DataPath)

	
	Depth = 1: load stimuli from DataPath and stimuli contained in the sub-directories of DataPath

	
	Depth < 0: load stimuli recursively from DataPath and all its sub-directories

	LabelName []

	Base stimuli label name

	LabelDepth [1]

	Number of sub-directory name levels used to form the stimuli labels. Examples:

	
	LabelDepth = -1: no label for all stimuli (label ID = -1)

	
	LabelDepth = 0: uses LabelName for all stimuli

	
	LabelDepth = 1: uses LabelName for stimuli in the current directory (DataPath) and LabelName/sub-directory name for stimuli in the sub-directories

	PerLabelPartitioning [1]

	If true (1), the Learn, Validation and Test parameters represent the fraction of the total stimuli to be partitioned in each set,
instead of a number of stimuli

	EquivLabelPartitioning [1]

	If true (1), the stimuli are equi-partitioned in the learn and validation sets, meaning that the same number of stimuli for each label is used
(only when PerLabelPartitioning is 1). The remaining stimuli are partitioned in the test set

	Validation [0.0]

	If PerLabelPartitioning is true, fraction of images used for the validation; else, number of images used for the validation, regardless of their labels

	Test [1.0-Learn-Validation]

	If PerLabelPartitioning is true, fraction of images used for the test; else, number of images used for the test, regardless of their labels

	ValidExtensions []

	List of space-separated valid stimulus file extensions (if left empty, any file extension is considered a valid stimulus)

	LoadMore []

	Name of an other section with the same options to load a different DataPath

	ROIFile []

	File containing the stimuli ROIs. If a ROI file is specified, LabelDepth should be set to -1

	DefaultLabel []

	Label name for pixels outside any ROI (default is no label, pixels are ignored)

	ROIsMargin [0]

	Number of pixels around ROIs that are ignored (and not considered as DefaultLabel pixels)

Note

If EquivLabelPartitioning is 1 (default setting), the number of stimuli
per label that will be partitioned in the learn and validation sets will
correspond to the number of stimuli from the label with the fewest stimuli.

To load and partition more than one DataPath, one can use the
LoadMore option:

[database]
Type=DIR_Database
DataPath=${N2D2_DATA}/GST
Learn=0.6
Validation=0.4
LoadMore=database.test

; Load stimuli from the "GST_Test" path in the test dataset
[database.test]
DataPath=${N2D2_DATA}/GST_Test
Learn=0.0
Test=1.0
; The LoadMore option is recursive:
; LoadMore=database.more

; [database.more]
; Load even more data here

Speech Commands Dataset

Use with Speech Commands Data Set, released by the Google
[Warden18].

[database]
Type=DIR_Database
DataPath=${N2D2_DATA}/speech_commands_v0.02
ValidExtensions=wav
IgnoreMasks=*/_background_noise_
Learn=0.6
Validation=0.2

CSV data files

CSV_Database is a generic driver for handling CSV data files. It can be used
to load one or several CSV files where each line is a different stimulus and one
column contains the label.

The parameters are the following:

	Option [default value]

	Description

	DataPath

	Path to the database

	Learn [0.6]

	Fraction of data used for the learning

	Validation [0.2]

	Fraction of data used for the validation

	PerLabelPartitioning [1]

	If true (1), the Learn, Validation and
Test parameters represent the fraction of the
total stimuli to be partitioned in each set,
instead of a number of stimuli

	EquivLabelPartitioning [1]

	If true (1), the stimuli are equi-partitioned in
the learn and validation sets, meaning that the
same number of stimuli for each label is used
(only when PerLabelPartitioning is 1).
The remaining stimuli are partitioned in the test
set

	LabelColumn [-1]

	Index of the column containing the label (if < 0,
from the end of the row)

	NbHeaderLines [0]

	Number of header lines to skip

	Test [1.0-Learn-
Validation]

	If PerLabelPartitioning is true, fraction of
images used for the test; else, number of images
used for the test, regardless of their labels

	LoadMore []

	Name of an other section with the same options to
load a different DataPath

Note

If EquivLabelPartitioning is 1 (default setting), the number of stimuli
per label that will be partitioned in the learn and validation sets will
correspond to the number of stimuli from the label with the fewest stimuli.

Usage example

In this example, we load the Electrical Grid Stability Simulated Data Data Set
(https://archive.ics.uci.edu/ml/datasets/Electrical+Grid+Stability+Simulated+Data+).

The CSV data file (Data_for_UCI_named.csv) is the following:

"tau1","tau2","tau3","tau4","p1","p2","p3","p4","g1","g2","g3","g4","stab","stabf"
2.95906002455997,3.07988520422811,8.38102539191882,9.78075443222607,3.76308477206316,-0.782603630987543,-1.25739482958732,-1.7230863114883,0.650456460887227,0.859578105752345,0.887444920638513,0.958033987602737,0.0553474891727752,"unstable"
9.3040972346785,4.90252411201167,3.04754072762177,1.36935735529605,5.06781210427845,-1.94005842705193,-1.87274168559721,-1.25501199162931,0.41344056837935,0.862414076352903,0.562139050527675,0.781759910653126,-0.00595746432603695,"stable"
8.97170690932022,8.84842842134833,3.04647874898866,1.21451813833956,3.40515818001095,-1.20745559234302,-1.27721014673295,-0.92049244093498,0.163041039311334,0.766688656526962,0.839444015400588,0.109853244952427,0.00347087904838871,"unstable"
0.716414776295121,7.66959964406565,4.48664083058949,2.34056298396795,3.96379106326633,-1.02747330413905,-1.9389441526466,-0.997373606480681,0.446208906537321,0.976744082924302,0.929380522872661,0.36271777426931,0.028870543444887,"unstable"
3.13411155161342,7.60877161603408,4.94375930178099,9.85757326996638,3.52581081652096,-1.12553095451115,-1.84597485447561,-0.554305007534195,0.797109525792467,0.455449947148291,0.656946658473716,0.820923486481631,0.0498603734837059,"unstable"
...

There is one header line and the last column is the label, which is the default.

This file is loaded and the data is splitted between the learning set and the
validation set with a 0.7/0.3 ratio in the INI file with the following section:

[database]
Type=CSV_Database
Learn=0.7
Validation=0.3
DataPath=Data_for_UCI_named.csv
NbHeaderLines=1

Other built-in databases

Actitracker_Database

Actitracker database, released by the WISDM Lab
[LWX+11].

	Option [default value]

	Description

	Learn [0.6]

	Fraction of data used for the learning

	Validation [0.2]

	Fraction of data used for the validation

	UseUnlabeledForTest [0]

	If true, use the unlabeled dataset for the test

	DataPath

	Path to the database

	[$N2D2_DATA/WISDM_at_v2.0]

	

CIFAR10_Database

CIFAR10 database [Kri09].

	Option [default value]

	Description

	Validation [0.0]

	Fraction of the learning set used for validation

	DataPath

	Path to the database

	[$N2D2_DATA/cifar-10-batches-bin]

	

CIFAR100_Database

CIFAR100 database [Kri09].

	Option [default value]

	Description

	Validation [0.0]

	Fraction of the learning set used for validation

	UseCoarse [0]

	If true, use the coarse labeling (10 labels instead of 100)

	DataPath

	Path to the database

	[$N2D2_DATA/cifar-100-binary]

	

CKP_Database

The Extended Cohn-Kanade (CK+) database for expression recognition
[LuceyCohnKanade+10].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	DataPath

	Path to the database

	[$N2D2_DATA/cohn-kanade-images]

	

Caltech101_DIR_Database

Caltech 101 database [FFFP04].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	IncClutter [0]

	If true, includes the BACKGROUND_Google directory of the database

	DataPath

	Path to the database

	[$N2D2_DATA/

	

	101_ObjectCategories]

	

Caltech256_DIR_Database

Caltech 256 database [GHP07].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	IncClutter [0]

	If true, includes the BACKGROUND_Google directory of the database

	DataPath

	Path to the database

	[$N2D2_DATA/

	

	256_ObjectCategories]

	

CaltechPedestrian_Database

Caltech Pedestrian database [DollarWSP09].

Note that the images and annotations must first be extracted from the
seq video data located in the videos directory using the
dbExtract.m Matlab tool provided in the “Matlab evaluation/labeling
code” downloadable on the dataset website.

Assuming the following directory structure (in the path specified in the
N2D2_DATA environment variable):

	CaltechPedestrians/data-USA/videos/... (from the setxx.tar files)

	CaltechPedestrians/data-USA/annotations/... (from the setxx.tar
files)

	CaltechPedestrians/tools/piotr_toolbox/toolbox (from the Piotr’s
Matlab Toolbox archive)

	CaltechPedestrians/*.m including dbExtract.m (from the Matlab
evaluation/labeling code)

Use the following command in Matlab to generate the images and
annotations:

cd([getenv('N2D2_DATA') '/CaltechPedestrians'])
addpath(genpath('tools/piotr_toolbox/toolbox')) % add the Piotr's Matlab Toolbox in the Matlab path
dbInfo('USA')
dbExtract()

	Option [default value]

	Description

	Validation [0.0]

	Fraction of the learning set used for validation

	SingleLabel [1]

	Use the same label for “person” and “people” bounding box

	IncAmbiguous [0]

	Include ambiguous bounding box labeled “person?” using the same label as “person”

	DataPath

	Path to the database images

	[$N2D2_DATA/

	

	CaltechPedestrians/data-USA/images]

	

	LabelPath

	Path to the database annotations

	[$N2D2_DATA/

	

	CaltechPedestrians/data-USA/annotations]

	

Cityscapes_Database

Cityscapes database [COR+16].

	Option [default value]

	Description

	IncTrainExtra [0]

	If true, includes the left 8-bit images - trainextra set (19,998 images)

	UseCoarse [0]

	If true, only use coarse annotations (which are the only annotations available for the trainextra set)

	SingleInstanceLabels [1]

	If true, convert group labels to single instance labels (for example, cargroup becomes car)

	DataPath

	Path to the database images

	[$N2D2_DATA/

	

	Cityscapes/leftImg8bit] or

	

	[$CITYSCAPES_DATASET] if defined

	

	LabelPath []

	Path to the database annotations (deduced from DataPath if left empty)

Warning

Don’t forget to install the libjsoncpp-dev package on your device if you wish to use this database.

To install JSON for C++ library on Ubuntu
sudo apt-get install libjsoncpp-dev

Daimler_Database

Daimler Monocular Pedestrian Detection Benchmark (Daimler Pedestrian).

	Option [default value]

	Description

	Learn [1.0]

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	Test [0.0]

	Fraction of images used for the test

	Fully [0]

	When activate it use the test dataset to learn. Use only on fully-cnn mode

DOTA_Database

DOTA database [XBD+17].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	DataPath

	Path to the database

	[$N2D2_DATA/DOTA]

	

	LabelPath

	Path to the database labels list file

	[]

	

FDDB_Database

Face Detection Data Set and Benchmark (FDDB)
[JLM10].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	DataPath

	Path to the images (decompressed originalPics.tar.gz)

	[$N2D2_DATA/FDDB]

	

	LabelPath

	Path to the annotations (decompressed FDDB-folds.tgz)

	[$N2D2_DATA/FDDB]

	

GTSDB_DIR_Database

GTSDB database [HSS+13].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	Validation [0.0]

	Fraction of images used for the validation

	DataPath

	Path to the database

	[$N2D2_DATA/FullIJCNN2013]

	

ILSVRC2012_Database

ILSVRC2012 database [RDS+15].

	Option [default value]

	Description

	Learn

	Fraction of images used for the learning

	DataPath

	Path to the database

	[$N2D2_DATA/ILSVRC2012]

	

	LabelPath

	Path to the database labels list file

	[$N2D2_DATA/ILSVRC2012/synsets.txt]

	

KITTI_Database

The KITTI Database provide ROI which can be use for autonomous driving
and environment perception. The database provide 8 labeled different
classes. Utilization of the KITTI Database is under licensing conditions
and request an email registration. To install it you have to follow this
link: http://www.cvlibs.net/datasets/kitti/eval_tracking.php and
download the left color images (15 GB) and the trainling labels of
tracking data set (9 MB). Extract the downloaded archives in your
$N2D2_DATA/KITTI folder.

	Option [default value]

	Description

	Learn [0.8]

	Fraction of images used for the learning

	Validation [0.2]

	Fraction of images used for the validation

KITTI_Road_Database

The KITTI Road Database provide ROI which can be used to road
segmentation. The dataset provide 1 labeled class (road) on 289 training
images. The 290 test images are not labeled. Utilization of the KITTI
Road Database is under licensing conditions and request an email
registration. To install it you have to follow this link:
http://www.cvlibs.net/datasets/kitti/eval_road.php and download the
“base kit” of (0.5 GB) with left color images, calibration and training
labels. Extract the downloaded archive in your $N2D2_DATA/KITTI
folder.

	Option [default value]

	Description

	Learn [0.8]

	Fraction of images used for the learning

	Validation [0.2]

	Fraction of images used for the validation

KITTI_Object_Database

The KITTI Object Database provide ROI which can be use for autonomous
driving and environment perception. The database provide 8 labeled
different classes on 7481 training images. The 7518 test images are not
labeled. The whole database provide 80256 labeled objects. Utilization
of the KITTI Object Database is under licensing conditions and request
an email registration. To install it you have to follow this link:
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark and
download the “lef color images” (12 GB) and the training labels of
object data set (5 MB). Extract the downloaded archives in your
$N2D2_DATA/KITTI_Object folder.

	Option [default value]

	Description

	Learn [0.8]

	Fraction of images used for the learning

	Validation [0.2]

	Fraction of images used for the validation

LITISRouen_Database

LITIS Rouen audio scene dataset [RG14].

	Option [default value]

	Description

	Learn [0.4]

	Fraction of images used for the learning

	Validation [0.4]

	Fraction of images used for the validation

	DataPath

	Path to the database

	[$N2D2_DATA/data_rouen]

	

Dataset images slicing

It is possible to automatically slice images from a dataset, with a
given slice size and stride, using the .slicing attribute. This
effectively increases the number of stimuli in the set.

[database.slicing]
ApplyTo=NoLearn
Width=2048
Height=1024
StrideX=2048
StrideY=1024
RandomShuffle=1 ; 1 is the default value

The RandomShuffle option, enabled by default, randomly shuffle the
dataset after slicing. If disabled, the slices are added in order at the
end of the dataset.

 Stimuli data analysis

Stimuli data analysis

You can enable stimuli data reporting with the following section (the
name of the section must start with env.StimuliData):

[env.StimuliData-raw]
ApplyTo=LearnOnly
LogSizeRange=1
LogValueRange=1

The stimuli data reported for the full MNIST learning set will look
like:

env.StimuliData-raw data:
Number of stimuli: 60000
Data width range: [28, 28]
Data height range: [28, 28]
Data channels range: [1, 1]
Value range: [0, 255]
Value mean: 33.3184
Value std. dev.: 78.5675

Zero-mean and unity standard deviation normalization

It it possible to normalize the whole database to have zero mean and
unity standard deviation on the learning set using a
RangeAffineTransformation transformation:

; Stimuli normalization based on learning set global mean and std.dev.
[env.Transformation-normalize]
Type=RangeAffineTransformation
FirstOperator=Minus
FirstValue=[env.StimuliData-raw]_GlobalValue.mean
SecondOperator=Divides
SecondValue=[env.StimuliData-raw]_GlobalValue.stdDev

The variables _GlobalValue.mean and _GlobalValue.stdDev are
automatically generated in the [env.StimuliData-raw] block. Thanks
to this facility, unknown and arbitrary database can be analysed and
normalized in one single step without requiring any external data
manipulation.

After normalization, the stimuli data reported is:

env.StimuliData-normalized data:
Number of stimuli: 60000
Data width range: [28, 28]
Data height range: [28, 28]
Data channels range: [1, 1]
Value range: [-0.424074, 2.82154]
Value mean: 2.64796e-07
Value std. dev.: 1

Where we can check that the global mean is close to 0 and the standard
deviation is 1 on the whole dataset. The result of the transformation on
the first images of the set can be checked in the generated frames
folder, as shown in figure [fig:frame0Mean1StdDev].

[image: Image of the set after normalization.]

Image of the set after normalization.

Substracting the mean image of the set

Using the StimuliData object followed with an
AffineTransformation, it is also possible to use the mean image of
the dataset to normalize the data:

[env.StimuliData-meanData]
ApplyTo=LearnOnly
MeanData=1 ; Provides the _MeanData parameter used in the transformation

[env.Transformation]
Type=AffineTransformation
FirstOperator=Minus
FirstValue=[env.StimuliData-meanData]_MeanData

The resulting global mean image can be visualized in
env.StimuliData-meanData/meanData.bin.png an is shown in figure
[fig:meanData].

[image: Global mean image generated by ``StimuliData`` with the ``MeanData`` parameter enabled.]

Global mean image generated by StimuliData with the MeanData
parameter enabled.

After this transformation, the reported stimuli data becomes:

env.StimuliData-processed data:
Number of stimuli: 60000
Data width range: [28, 28]
Data height range: [28, 28]
Data channels range: [1, 1]
Value range: [-139.554, 254.979]
Value mean: -3.45583e-08
Value std. dev.: 66.1288

The result of the transformation on the first images of the set can be
checked in the generated frames folder, as shown in figure
[fig:frameMinusMean].

[image: Image of the set after the ``AffineTransformation`` substracting the global mean image (keep in mind that the original image value range is [0, 255]).]

Image of the set after the AffineTransformation substracting the
global mean image (keep in mind that the original image value range
is [0, 255]).

 Stimuli provider (Environment)

Stimuli provider (Environment)

Introduction

The database section must feed a stimuli provider (or environment), which is
instantiated with a section named sp (or env) in the INI file. When the
two sections are present in the INI file, they are implicitly connected: the
StimuliProvider is automatically aware of the Database driver that is
present. The StimuliProvider section specifies the input dimensions of the
network (width, height), as well as the batch size.

Example:

[sp]
SizeX=24
SizeY=24
BatchSize=12 ; [default: 1]

Data augmentation and conditioning Transformation blocks and data analysis
StimuliData blocks can be associated to a stimuli provider as shown below:

[image: Data augmentation, conditioning and analysis flow.]

Data augmentation, conditioning and analysis flow.

The table below summarizes the parameters available for the sp section:

	Option [default value]

	Description

	SizeX

	Environment width

	SizeY

	Environment height

	NbChannels [1]

	Number of channels (applicable only if there is no env.ChannelTransformation[...])

	BatchSize [1]

	Batch size

	CompositeStimuli [0]

	If true, use pixel-wise stimuli labels

	CachePath []

	Stimuli cache path (no cache if left empty)

The env section accepts more parameters dedicated to event-based (spiking)
simulation:

	Option (env only) [default]

	Description

	
	

	StimulusType [SingleBurst]

	Method for converting stimuli into spike trains. Can be any of SingleBurst, Periodic, JitteredPeriodic or Poissonian

	DiscardedLateStimuli [1.0]

	The pixels in the pre-processed stimuli with a value above this limit never generate spiking events

	PeriodMeanMin [50 TimeMs]

	Mean minimum period \(\overline{T_{min}}\), used for periodic temporal codings, corresponding to pixels in the pre-processed stimuli with a value of 0 (which are supposed to be the most significant pixels)

	PeriodMeanMax [12 TimeS]

	Mean maximum period \(\overline{T_{max}}\), used for periodic temporal codings, corresponding to pixels in the pre-processed stimuli with a value of 1 (which are supposed to be the least significant pixels). This maximum period may be never reached if DiscardedLateStimuli is lower than 1.0

	PeriodRelStdDev [0.1]

	Relative standard deviation, used for periodic temporal codings, applied to the spiking period of a pixel

	PeriodMin [11 TimeMs]

	Absolute minimum period, or spiking interval, used for periodic temporal codings, for any pixel

For image segmentation, the parameter CompositeStimuli=1 must always be
present, meaning that the labels of the image must have the same dimension than
the image (and cannot be a single class value as in classification problem).

Data range and conversion

A configuration section can be associated to a StimuliProvider, as shown
below. The DataSignedMapping=1 parameter specifies that the input value
range must be interpreted as signed, even if the values are unsigned, which is
usually the case for standard image formats (BMP, JPEG, PNG…). In case of
8-bit images, values from 0 to 255 are therefore mapped to the range -128 to
127 when this parameter is enabled.

[sp]
SizeX=[database.slicing]Width
SizeY=[database.slicing]Height
BatchSize=${BATCH_SIZE}
CompositeStimuli=1
ConfigSection=sp.config

[sp.config]
DataSignedMapping=1

Note

In N2D2, the integer value input range [0, 255] (or [-128, 127] with the
DataSignedMapping=1 parameter) (for 8-bit images), is implicitly converted to
floating point value range [0.0, 1.0] or [-1.0, 1.0] in the StimuliProvider,
after the transformations, unless one of the transformation changes the
representation and/or the range of the data.

Note

The DataSignedMapping parameter only has effect when implicit conversion
is performed.

The input value range can also be changed explicitly using for example a
RangeAffineTransformation, like below, in which case no implicit conversion
is performed afterwards (and the DataSignedMapping parameter has no effect):

[sp.Transformation-rangeAffine]
Type=RangeAffineTransformation
FirstOperator=Minus
FirstValue=128.0
SecondOperator=Divides
SecondValue=128.0

When running a simulation in N2D2, the graph of the transformations with all
their parameters as well as the expected output dimension after each
transformation is automatically generated (in the file transformations.png).
As transformations can be applied only to one of the learn, validation or test
datasets, three graphs are generated, as shown in the following figure.

[image: Graph of the transformations for the learn, validation and test datasets, automatically generated by N2D2.]

Graph of the transformations for the learn, validation and test datasets,
automatically generated by N2D2.

Images slicing during training and inference

In N2D2, the input dimensions of a neural network is fixed and cannot be
changed dynamically during the training and inference, as images are processed
in batch, like any other deep learning framework. Therefore, in order to deal
with datasets containing images of variable dimensions, patches or slices of
fixed dimensions must be extracted.

In N2D2, two mechanisms are provided to extract slices:

	For training, random slices can be extracted from bigger images for each batch, thus allowing to cover the full images over the training time with the maximum variability. This also act as basic data augmentation. Random slices extraction is achieved using a SliceExtractionTransformation, applied only to the training set with the parameter ApplyTo=LearnOnly.

[sp.OnTheFlyTransformation-1]
Type=SliceExtractionTransformation
Width=${WIDTH}
Height=${HEIGHT}
RandomOffsetX=1
RandomOffsetY=1
AllowPadding=1
ApplyTo=LearnOnly

	For inference, one wants to cover the full images once and only once. This cannot be achieved with a N2D2 Transformation, but has to be handled by the Database driver. In order to do so, any Database driver can have an additional “slicing” section in the N2D2 INI file, which will automatically extract regularly strided fixed size slices from the dataset. The example above can be used to extract slides for the validation and testing datasets, with the parameter ApplyTo=NoLearn.

[database.slicing]
Width=${WIDTH}
Height=${HEIGHT}
StrideX=[database.slicing]Width
StrideY=[database.slicing]Height
Overlapping=1
ApplyTo=NoLearn

When an image size is not a multiple of the slices size, the most right and
most bottom slices may have a size lower than the intended fixed slice size
specified with Width and Height. There are two ways to deal with these slices:

	Add the Overlapping=1 parameter, which allows an overlapping between the
right/bottom-most slice and the preceding one. The overlapping area in the
right/bottom-most slice is then marked as “ignore” for the labeling, to
avoid counting twice the classification result on these pixels.

	Add a PadCropTransformation to pad to the slice target size for NoLearn
data. In this case the padded area can be either ignored or mirror padding
can be used.

Blending for data augmentation

Complex data augmentation / pre-processing pipelines can be created by combining
the different available transformations. It is even possible to use multiple
Database and StimuliProvider, to create for example a “blending” pipeline,
which is introduced here and illustrated in the figure below.

[image: Blending pipeline working principle.]

Blending pipeline working principle.

An example of a blending pipeline in the INI file is given here. The first part
is the BlendingTransformation, which is inserted in the main image processing
pipeline.

...

; Here we add a blending transformation, which will perform objects blending
; to images with the specified labels in the dataset, selected by the
; ApplyToLabels parameter.
[sp.OnTheFlyTransformation-blend]
Type=BlendingTransformation
ApplyTo=LearnOnly
Database=database_objects ; database driver to use for the objects to blend
StimuliProvider=sp_objects ; stimuli provider specifying the transformations
 ; to apply on the object data before blending
; Specifies the name of the image label(s) on which a blending can be performed.
; Here, any image in a "backgrounds" sub-directory in the dataset will be used
; for the blending
; POSSIBLE FUTURE EXTENSION: possibility to associate some backgrounds to some
; object types only. Adding a background in a "backgrounds" sub-directory in the
; object directory may allow this.
; POSSIBLE FUTURE EXTENSION: specify ROIs for blending some object types.
ApplyToLabels=*backgrounds*
; Indicate whether multiple object types can be mixed on the same background
TypeMixing=0
; Density of the object in the background, from 0.0 to 1.0
DensityRange=0.0 0.2
; Horizontal margin between objects (in pixels)
MarginH=0
; Vertical margin between objects (in pixels)
MarginV=0
; Blending method
; POSSIBLE FUTURE EXTENSION: add other blending methods...
BlendingMethod=SmoothEdge
BlendingSmoothSize=5
; For DEBUG purpose, specifying a non-empty SavePath will save all the generated
; blending with their associated JSON annotation in the SavePath directory.
SavePath=blending

...

The second part is the object pre-processing and extraction pipeline, that is
attached to the BlendingTransformation.

; --- BEGIN --- DATA TO BLEND PRE-PROCESSING ---
; Database driver for the objects. Can be a sub-set of the main pipe image
; dataset, or even the full main dataset itself
[database_objects]
Type=DIR_Database
DataPath=${DATA_PATH}
Depth=-1
LabelDepth=1
Learn=1.0
EquivLabelPartitioning=0
; Since we use the same dataset, ignore the background images that contain
; no object to blend.
IgnoreMasks=*backgrounds*
DefaultLabel=background ; Label for pixels outside any ROI (default is no label, pixels are ignored)

; Simuli provider for objects => no need to change this part.
[sp_objects]
; Sizes to 0 means any size, require that BatchSize=0
SizeX=0
SizeY=0
BatchSize=0

; Apply random rotation & scaling to objects
; POSSIBLE FUTURE EXTENSION: apply different transformations depending on the
; type of object
[sp_objects.OnTheFlyTransformation-0]
Type=SliceExtractionTransformation
; Sizes to 0 means any size, size will not be changed by the transformation
Width=0
Height=0
RandomRotation=1
RandomScaling=1
RandomScalingRange=0.5 2.0

; ... add here other transformations to apply to objects before extraction and
; blending

; Extend the object labels to have a smooth transition with background
[sp_objects.OnTheFlyTransformation-1]
Type=MorphologyTransformation
Operation=Dilate
Size=3
ApplyToLabels=1
NbIterations=2

; This has to be the last transformation in the pre-processing of the images
; that will be blended.
; After data augmentation, a random object is extracted from the image,
; using ROIs or connected-component labeling.
[sp_objects.OnTheFlyTransformation-2]
Type=ROIExtractionTransformation
; Extract any label ID
Label=-1
; Perform connected-component labeling to the label to obtain objects ROIs.
LabelSegmentation=1
Margin=0
KeepComposite=1
; Possibility to filter the ROIs to keep before random selection of a single
; one:
MinSize=0
FilterMinHeight=0
FilterMinWidth=0
FilterMinAspectRatio=0.0
FilterMaxAspectRatio=0.0
MergeMaxHDist=10
MergeMaxVDist=10
; --- END --- DATA TO BLEND PRE-PROCESSING ---

Built-in transformations

There are 6 possible categories of transformations:

	env.Transformation[...] Transformations applied to the input images
before channels creation;

	env.OnTheFlyTransformation[...] On-the-fly transformations applied
to the input images before channels creation;

	env.ChannelTransformation[...] Create or add transformation for a
specific channel;

	env.ChannelOnTheFlyTransformation[...] Create or add on-the-fly
transformation for a specific channel;

	env.ChannelsTransformation[...] Transformations applied to all the
channels of the input images;

	env.ChannelsOnTheFlyTransformation[...] On-the-fly transformations
applied to all the channels of the input images.

Example:

[env.Transformation]
Type=PadCropTransformation
Width=24
Height=24

Several transformations can applied successively. In this case, to be
able to apply multiple transformations of the same category, a different
suffix ([...]) must be added to each transformation.

The transformations will be processed in the order of appearance in
the INI file regardless of their suffix.

Common set of parameters for any kind of transformation:

	Option [default value]

	Description

	ApplyTo [All]

	Apply the transformation only to the specified stimuli sets. Can be:

	
	LearnOnly: learning set only

	
	ValidationOnly: validation set only

	
	TestOnly: testing set only

	
	NoLearn: validation and testing sets only

	
	NoValidation: learning and testing sets only

	
	NoTest: learning and validation sets only

	
	All: all sets (default)

Example:

[env.Transformation-1]
Type=ChannelExtractionTransformation
CSChannel=Gray

[env.Transformation-2]
Type=RescaleTransformation
Width=29
Height=29

[env.Transformation-3]
Type=EqualizeTransformation

[env.OnTheFlyTransformation]
Type=DistortionTransformation
ApplyTo=LearnOnly ; Apply this transformation for the Learning set only
ElasticGaussianSize=21
ElasticSigma=6.0
ElasticScaling=20.0
Scaling=15.0
Rotation=15.0

List of available transformations:

AffineTransformation

Apply an element-wise affine transformation to the image with matrixes
of the same size.

	Option [default value]

	Description

	FirstOperator

	First element-wise operator, can be Plus, Minus, Multiplies, Divides

	FirstValue

	First matrix file name

	SecondOperator [Plus]

	Second element-wise operator, can be Plus, Minus, Multiplies, Divides

	SecondValue []

	Second matrix file name

The final operation is the following, with \(A\) the image matrix,
\(B_{1st}\), \(B_{2nd}\) the matrixes to
add/substract/multiply/divide and \(\odot\) the element-wise
operator :

\[\begin{split}f(A) = \left(A\;\substack{\odot\\op_{1st}}\;B_{1st}\right)\;
\substack{\odot\\op_{2nd}}\;B_{2nd}\end{split}\]

ApodizationTransformation

Apply an apodization window to each data row.

	Option [default value]

	Description

	Size

	Window total size (must match the number of data columns)

	WindowName [Rectangular]

	Window name. Possible values are:

	
	Rectangular: Rectangular

	
	Hann: Hann

	
	Hamming: Hamming

	
	Cosine: Cosine

	
	Gaussian: Gaussian

	
	Blackman: Blackman

	
	Kaiser: Kaiser

Gaussian window

Gaussian window.

	Option [default value]

	Description

	WindowName.Sigma [0.4]

	Sigma

Blackman window

Blackman window.

	Option [default value]

	Description

	WindowName.Alpha [0.16]

	Alpha

Kaiser window

Kaiser window.

	Option [default value]

	Description

	WindowName.Beta [5.0]

	Beta

CentroidCropTransformation

Find the centroid of the image and crop the image so that the center of the image
matches the centroid location. The cropping can be done on both axis, or just
one axis with the Axis parameter. If Axis is 1, only the horizontal axis
will be cropped so that the centroid x-location is at half the image width.

	Option [default value]

	Description

	Axis [-1]

	Axis to consider for the centroid
(-1 = both, 0 = cols, 1 = rows)

In practice, this transformation can be used in conjunction with the
PadCropTransformation, in order to obtain cropped images of always of the same
dimension (by cropping for example to the smallest image obtained after
CentroidCropTransformation), all centered on their respective centroid.

BlendingTransformation

N2D2-IP only: available upon request.

This transformation can be used to blend image objects, provided by another
Database and associated StimuliProvider, to the images of the current
StimuliProvider.

	Option [default value]

	Description

	Database

	Name of the Database section to use for the objects to blend

	StimuliProvider

	Name of the StimuliProvider section specifying the transformations to apply on the objects data before blending

	ApplyToLabels []

	Space-separated list that specifies the name of the image label(s) on which a blending can be performed (in the current
data pipe). The usual * and + wildcards are allowed.

	TypeMixing [0]

	If true (1), multiple object types can be mixed on the same image

	DensityRange [0.0 0.0]

	Range of density of the objects to blend in the image (values are from 0.0 to 1.0). A different random density in this
range is used for each image. If the two values are equal, the density is constant. A constant density of 0 (corresponding
the default range [0.0 0.0]) means that only a single object is blended in the image in all cases, regardless of the object
size. Indeed, the density parameter is checked only after the first object was inserted.

	MarginH [0]

	Minimum horizontal margin between inserted objects (in pixels)

	MarginV [0]

	Minimum vertical margin between inserted objects (in pixels)

	BlendingMethod
[Linear]

	Blending method to use (see the BlendingMethod section)

	BlendingAlpha [0.2]

	\(\alpha\) factor for the blending. Depends on the blending method (see the BlendingMethod section)

	BlendingBeta [0.8]

	\(\beta\) factor for the blending. Depends on the blending method (see the BlendingMethod section)

	BlendingSmoothSize [5]

	Blurring kernel size, used in some blending methods (see the BlendingMethod section)

	SavePath []

	If not empty, all the blended images are stored in SavePath during the simulation

BlendingMethod

In the following equations, \(O\) is the object image, \(I\) is the image
of the current pipe on which objects must be inserted.
And \(R\) is the resulting image.

	Linear: no smoothing.
	\(R=\alpha.O + \beta.I\)

	LinearByDistance: limit the blur in the blended object background.
	
\(\Delta = \frac{\|O-I\|-min(\|O-I\|)}{max(\|O-I\|)-min(\|O-I\|)}\)

\(R=\alpha.O.(1-\Delta) + \beta.I.\Delta\)

	SmoothEdge: smoothing at the borders of the objects.
	
\(\alpha = \begin{cases}
 1 & \text{when } LABEL \neq 0\\
 0 & \text{otherwise}
\end{cases}\)

\(\alpha' = gaussian_blur(\alpha)\)

\(R=\alpha'.O + (1-\alpha').I\)

	SmoothEdgeLinearByDistance: combines SmoothEdge and LinearByDistance.
	
\(\alpha = \begin{cases}
 \Delta & \text{when } LABEL \neq 0\\
 0 & \text{otherwise}
\end{cases}\)

\(\alpha' = gaussian_blur(\alpha)\)

\(R=\alpha'.O + (1-\alpha').I\)

Labels mapping

When processing the first batch of data, you might get a message like the
following in the console:

BlendingTransformation: labels mapping is required with the following mapping:
 1 -> 9 (cat)
 2 -> 12 (dog)
 3 -> 66 (bird)

What happens here is that the labels ID from the database containing the objects
to blend (specified by the Database parameter) must match the correct labels
ID from the current database (specified by the [database] section).
In the log above, the labels ID on the left are the ones from the objects
database and the labels ID on the right are the ones from the current database.
In N2D2, upon loading a database, a new label ID is created for each new unique
label name encoutered, in the loading order (alphabetical for DIR_Database,
but may be arbitrary for other database drivers). The objects database may
contain only a subset of the labels present in the current database,
and/or the labels may be loaded in a different order. In both cases, the ID
affected to a label name will be different between the two databases. During
blending however, one wants that the blended object labels correspond to the
labels of the current database. To solve this, labels mapping is automatically
performed in N2D2 so that for corresponding label names, the label
ID in the objects database is translated to the label ID of current database.
In the log above for example, the objects database contains only 3 labels:
“cat”, “dog” and “bird”, with ID 1, 2 and 3 respectively. These
labels ID are automatically replaced by the corresponding ID (for identical
label name) in the current database, for the blended objects, which are here
9, 12 and 66 respectively.

Note

Each label from the objects database (objects to blend) must match
an existing label in the current database. There is a match if:

	There is an identical label name in the current database;

	There is a single label name in the current database that ends with the
objects database label name. For example, the label “/dog” in the objects
database will match with the “dog” label in the current database.

If the objects database contains a label name that does not exist/match in
the current database, an error is emitted:

BlendingTransformation: label "xxx" in blending database not present in current database!

ChannelDropTransformation

N2D2-IP only: available upon request.

Randomly drop some channels of the image and replace them with a constant value.
This can be useful to simulate missing channel data in multi-channel data.

	Option [default value]

	Description

	DropProb

	Channel’s drop probabilities (space-separated list of
probabilities, in the order of the image channels)

	DropValue [0.0]

	Value to use for dropped channels pixels

ChannelExtractionTransformation

Extract an image channel.

	Option

	Description

	CSChannel

	Blue: blue channel in the BGR colorspace, or first channel of any colorspace

	
	Green: green channel in the BGR colorspace, or second channel of any colorspace

	
	Red: red channel in the BGR colorspace, or third channel of any colorspace

	
	Hue: hue channel in the HSV colorspace

	
	Saturation: saturation channel in the HSV colorspace

	
	Value: value channel in the HSV colorspace

	
	Gray: gray conversion

	
	Y: Y channel in the YCbCr colorspace

	
	Cb: Cb channel in the YCbCr colorspace

	
	Cr: Cr channel in the YCbCr colorspace

ChannelShakeTransformation

N2D2-IP only: available upon request.

Randomly shift some channels of the image.
This can be useful to simulate misalignment between multiple channel data.

	Option [default value]

	Description

	VerticalRange[*]

	Vertical shift range (in pixels) for each channel. For example, to randomly shift the second channel by +/- 5
pixels in the vertical direction, use: VerticalRange[1]=-5.0 5.0

	HorizontalRange[*]

	Horizontal shift range (in pixels) for each channel

	Distribution [Uniform]

	Random distribution to use for the shift

	Rounded [1]

	If true (1), use integer value for the shifts (no pixel interpolation needed)

	BorderType

	Border type used when padding. Possible values:

	[MinusOneReflectBorder]

	ConstantBorder: pad with BorderValue

	
	ReplicateBorder: last element is replicated throughout, like aaaaaa|abcdefgh|hhhhhhh

	
	ReflectBorder: border will be mirror reflection of the border elements, like fedcba|abcdefgh|hgfedcb

	
	WrapBorder: it will look like cdefgh|abcdefgh|abcdefg

	
	MinusOneReflectBorder: same as ReflectBorder but with a slight change, like gfedcb|abcdefgh|gfedcba

	
	MeanBorder: pad with the mean color of the image

	BorderValue [0.0 0.0 0.0]

	Background color used when padding with BorderType is ConstantBorder

Distribution

Possible distribution and meaning of the range.
For example with VerticalRange[1]=-5.0 5.0.

	Uniform
	Uniform between -5 and 5.

	Normal
	Normal with mean (-5+5)/2=0 and std. dev. = (5-(-5))/6 = 1.67.
The range defines the std. dev. such that range = 6 sigma.

	TruncatedNormal
	Same as Normal, but truncated between -5 and 5.

ColorSpaceTransformation

Change the current image colorspace.

	Option

	Description

	ColorSpace

	BGR: convert any gray, BGR or BGRA image to BGR

	
	RGB: convert any gray, BGR or BGRA image to RGB

	
	HSV: convert BGR image to HSV

	
	HLS: convert BGR image to HLS

	
	YCrCb: convert BGR image to YCrCb

	
	CIELab: convert BGR image to CIELab

	
	CIELuv: convert BGR image to CIELuv

	
	RGB_to_BGR: convert RGB image to BGR

	
	RGB_to_HSV: convert RGB image to HSV

	
	RGB_to_HLS: convert RGB image to HLS

	
	RGB_to_YCrCb: convert RGB image to YCrCb

	
	RGB_to_CIELab: convert RGB image to CIELab

	
	RGB_to_CIELuv: convert RGB image to CIELuv

	
	HSV_to_BGR: convert HSV image to BGR

	
	HSV_to_RGB: convert HSV image to RGB

	
	HLS_to_BGR: convert HLS image to BGR

	
	HLS_to_RGB: convert HLS image to RGB

	
	YCrCb_to_BGR: convert YCrCb image to BGR

	
	YCrCb_to_RGB: convert YCrCb image to RGB

	
	CIELab_to_BGR: convert CIELab image to BGR

	
	CIELab_to_RGB: convert CIELab image to RGB

	
	CIELuv_to_BGR: convert CIELuv image to BGR

	
	CIELuv_to_RGB: convert CIELuv image to RGB

Note that the default colorspace in N2D2 is BGR, the same as in OpenCV.

DFTTransformation

Apply a DFT to the data. The input data must be single channel, the
resulting data is two channels, the first for the real part and the
second for the imaginary part.

	Option [default value]

	Description

	TwoDimensional [1]

	If true, compute a 2D image DFT. Otherwise, compute the 1D DFT of each data row

Note that this transformation can add zero-padding if required by the
underlying FFT implementation.

DistortionTransformation

Apply elastic distortion to the image. This transformation is generally
used on-the-fly (so that a different distortion is performed for each
image), and for the learning only.

	Option [default value]

	Description

	ElasticGaussianSize [15]

	Size of the gaussian for elastic distortion (in pixels)

	ElasticSigma [6.0]

	Sigma of the gaussian for elastic distortion

	ElasticScaling [0.0]

	Scaling of the gaussian for elastic distortion

	Scaling [0.0]

	Maximum random scaling amplitude (+/-, in percentage)

	Rotation [0.0]

	Maximum random rotation amplitude (+/-, in °)

EqualizeTransformation

Image histogram equalization.

	Option [default value]

	Description

	Method [Standard]

	Standard: standard histogram equalization

	
	CLAHE: contrast limited adaptive histogram equalization

	CLAHE_ClipLimit [40.0]

	Threshold for contrast limiting (for CLAHE only)

	CLAHE_GridSize [8]

	Size of grid for histogram equalization (for CLAHE only). Input image will be divided into equally sized rectangular tiles. This parameter defines the number of tiles in row and column.

ExpandLabelTransformation

Expand single image label (1x1 pixel) to full frame label.

FilterTransformation

Apply a convolution filter to the image.

	Option [default value]

	Description

	Kernel

	Convolution kernel. Possible values are:

	
	*: custom kernel

	
	Gaussian: Gaussian kernel

	
	LoG: Laplacian Of Gaussian kernel

	
	DoG: Difference Of Gaussian kernel

	
	Gabor: Gabor kernel

* kernel

Custom kernel.

	Option

	Description

	Kernel.SizeX [0]

	Width of the kernel (numer of columns)

	Kernel.SizeY [0]

	Height of the kernel (number of rows)

	Kernel.Mat

	List of row-major ordered coefficients of the kernel

If both Kernel.SizeX and Kernel.SizeY are 0, the kernel is
assumed to be square.

Note

When providing a custom kernel, no normalization is applied on its coefficients.

Gaussian kernel

Gaussian kernel.

	Option [default value]

	Description

	Kernel.SizeX

	Width of the kernel (numer of columns)

	Kernel.SizeY

	Height of the kernel (number of rows)

	Kernel.Positive [1]

	If true, the center of the kernel is positive

	Kernel.Sigma [\(\sqrt{2.0}\)]

	Sigma of the kernel

LoG kernel

Laplacian Of Gaussian kernel.

	Option [default value]

	Description

	Kernel.SizeX

	Width of the kernel (numer of columns)

	Kernel.SizeY

	Height of the kernel (number of rows)

	Kernel.Positive [1]

	If true, the center of the kernel is positive

	Kernel.Sigma [\(\sqrt{2.0}\)]

	Sigma of the kernel

DoG kernel

Difference Of Gaussian kernel kernel.

	Option [default value]

	Description

	Kernel.SizeX

	Width of the kernel (numer of columns)

	Kernel.SizeY

	Height of the kernel (number of rows)

	Kernel.Positive [1]

	If true, the center of the kernel is positive

	Kernel.Sigma1 [2.0]

	Sigma1 of the kernel

	Kernel.Sigma2 [1.0]

	Sigma2 of the kernel

Gabor kernel

Gabor kernel.

	Option [default value]

	Description

	Kernel.SizeX

	Width of the kernel (numer of columns)

	Kernel.SizeY

	Height of the kernel (number of rows)

	Kernel.Theta

	Theta of the kernel

	Kernel.Sigma [\(\sqrt{2.0}\)]

	Sigma of the kernel

	Kernel.Lambda [10.0]

	Lambda of the kernel

	Kernel.Psi [\(\pi/2.0\)]

	Psi of the kernel

	Kernel.Gamma [0.5]

	Gamma of the kernel

FlipTransformation

Image flip transformation.

	Option [default value]

	Description

	HorizontalFlip [0]

	If true, flip the image horizontally

	VerticalFlip [0]

	If true, flip the image vertically

	RandomHorizontalFlip [0]

	If true, randomly flip the image horizontally

	RandomVerticalFlip [0]

	If true, randomly flip the image vertically

GradientFilterTransformation

Compute image gradient.

	Option [default value]

	Description

	Scale [1.0]

	Scale to apply to the computed gradient

	Delta [0.0]

	Bias to add to the computed gradient

	GradientFilter [Sobel]

	Filter type to use for computing the gradient. Possible options are: Sobel, Scharr and Laplacian

	KernelSize [3]

	Size of the filter kernel (has no effect when using the Scharr filter, which kernel size is always 3x3)

	ApplyToLabels [0]

	If true, use the computed gradient to filter the image label and ignore pixel areas where the gradient is below the Threshold. In this case, only the labels are modified, not the image

	InvThreshold [0]

	If true, ignored label pixels will be the ones with a low gradient (low contrasted areas)

	Threshold [0.5]

	Threshold applied on the image gradient

	Label []

	List of labels to filter (space-separated)

	GradientScale [1.0]

	Rescale the image by this factor before applying the gradient and the threshold, then scale it back to filter the labels

LabelFilterTransformation

Filter labels in the image. The specified labels can be removed, kept (meaning
all the other labels removed), or merged (the specified labels are replace by
the first one).

	Option [default value]

	Description

	Labels

	Space-separated list of label names to be filtered

	Filter [Remove]

	Type of filter to apply: Remove, Keep (labels not in the list are removed) or Merge (labels in the list are all replaced by the first one)

	DefaultLabel [-2]

	Default label, to be used where labels are removed. With the default value (-2), the default label of the associated database is used. If there is no default label, -1 (ignore) is used

This transformation filters both pixel-wise labels and ROIs.

LabelSliceExtractionTransformation

Extract a slice from an image belonging to a given label.

	Option [default value]

	Description

	Width

	Width of the slice to extract

	Height

	Height of the slice to extract

	Label [-1]

	Slice should belong to this label ID. If -1, the label ID is random

	RandomRotation [0]

	If true, extract randomly rotated slices

	RandomRotationRange [0.0 360.0]

	Range of the random rotations, in degrees, counterclockwise (if RandomRotation is enabled)

	SlicesMargin [0]

	Positive or negative, indicates the margin around objects that can be extracted in the slice

	KeepComposite [0]

	If false, the 2D label image is reduced to a single value corresponding to the extracted object label (useful
for patches classification tasks). Note that if SlicesMargin is > 0, the 2D label image may contain other
labels before reduction. For pixel-wise segmentation tasks, set KeepComposite to true.

	AllowPadding [0]

	If true, zero-padding is allowed if the image is smaller than the slice to extract

	BorderType [MinusOneReflectBorder]

	Border type used when padding. Possible values:

	
	ConstantBorder: pad with BorderValue

	
	ReplicateBorder: last element is replicated throughout, like aaaaaa|abcdefgh|hhhhhhh

	
	ReflectBorder: border will be mirror reflection of the border elements, like fedcba|abcdefgh|hgfedcb

	
	WrapBorder: it will look like cdefgh|abcdefgh|abcdefg

	
	MinusOneReflectBorder: same as ReflectBorder but with a slight change, like gfedcb|abcdefgh|gfedcba

	
	MeanBorder: pad with the mean color of the image

	BorderValue [0.0 0.0 0.0]

	Background color used when padding with BorderType is ConstantBorder

	IgnoreNoValid [1]

	If true (1), if no valid slice is found, a random slice is extracted and marked as ignored (-1)

	ExcludeLabels []

	Space-separated list of label ID to exclude from the random extraction (when Label is -1)

This transformation is useful to learn sparse object occurrences in a
lot of background. If the dataset is very unbalanced towards background,
this transformation will ensure that the learning is done on a more
balanced set of every labels, regardless of their actual pixel-wise
ratio.

Illustration of the working behavior of LabelSliceExtractionTransformation
with SlicesMargin = 0:

[image: Randomly extracted slices with label 0.]

Randomly extracted slices with label 0.

[image: Randomly extracted slices with label 1.]

Randomly extracted slices with label 1.

When SlicesMargin is 0, only slices that fully include a given label
are extracted, as shown in figures above. The behavior with
SlicesMargin < 0 is illustrated in figures below. Note that setting a negative
SlicesMargin larger in absolute value than Width/2 or
Height/2 will lead in some (random) cases in incorrect slice labels
in respect to the majority pixel label in the slice.

Illustration of the working behavior of LabelSliceExtractionTransformation
with SlicesMargin = -32:

[image: Randomly extracted slices including label 0.]

Randomly extracted slices including label 0.

[image: Randomly extracted slices including label 1.]

Randomly extracted slices including label 1.

MagnitudePhaseTransformation

Compute the magnitude and phase of a complex two channels input data,
with the first channel \(x\) being the real part and the second
channel \(y\) the imaginary part. The resulting data is two
channels, the first one with the magnitude and the second one with the
phase.

	Option [default value]

	Description

	LogScale [0]

	If true, compute the magnitude in log scale

The magnitude is:

\[M_{i,j} = \sqrt{x_{i,j}^2 + x_{i,j}^2}\]

If LogScale = 1, compute \(M'_{i,j} = log(1 + M_{i,j})\).

The phase is:

\[\theta_{i,j} = atan2(y_{i,j}, x_{i,j})\]

MorphologicalReconstructionTransformation

Apply a morphological reconstruction transformation to the image. This
transformation is also useful for post-processing.

	Option [default value]

	Description

	Operation

	Morphological operation to apply. Can be:

	
	ReconstructionByErosion: reconstruction by erosion operation

	
	ReconstructionByDilation: reconstruction by dilation operation

	
	OpeningByReconstruction: opening by reconstruction operation

	
	ClosingByReconstruction: closing by reconstruction operation

	Size

	Size of the structuring element

	ApplyToLabels [0]

	If true, apply the transformation to the labels instead of the image

	Shape [Rectangular]

	Shape of the structuring element used for morphology operations. Can be Rectangular, Elliptic or Cross.

	NbIterations [1]

	Number of times erosion and dilation are applied for opening and closing reconstructions

MorphologyTransformation

Apply a morphology transformation to the image. This transformation is
also useful for post-processing.

	Option [default value]

	Description

	Operation

	Morphological operation to apply. Can be:

	
	Erode: erode operation (\(=erode(src)\))

	
	Dilate: dilate operation (\(=dilate(src)\))

	
	Opening: opening operation (\(open(src)=dilate(erode(src))\))

	
	Closing: closing operation (\(close(src)=erode(dilate(src))\))

	
	Gradient: morphological gradient (\(=dilate(src)-erode(src)\))

	
	TopHat: top hat (\(=src-open(src)\))

	
	BlackHat: black hat (\(=close(src)-src\))

	Size

	Size of the structuring element

	ApplyToLabels [0]

	If true, apply the transformation to the labels instead of the image

	Shape [Rectangular]

	Shape of the structuring element used for morphology operations. Can be Rectangular, Elliptic or Cross.

	NbIterations [1]

	Number of times erosion and dilation are applied

NormalizeTransformation

Normalize the image.

	Option [default value]

	Description

	Norm [MinMax]

	Norm type, can be:

	
	L1: L1 normalization

	
	L2: L2 normalization

	
	Linf: Linf normalization

	
	MinMax: min-max normalization

	NormValue [1.0]

	Norm value (for L1, L2 and Linf)

	
	Such that \(||data||_{L_{p}} = NormValue\)

	NormMin [0.0]

	Min value (for MinMax only)

	
	Such that \(min(data) = NormMin\)

	NormMax [1.0]

	Max value (for MinMax only)

	
	Such that \(max(data) = NormMax\)

	PerChannel [0]

	If true, normalize each channel individually

PadCropTransformation

Pad/crop the image to a specified size.

	Option [default value]

	Description

	Width

	Width of the padded/cropped image

	Height

	Height of the padded/cropped image

	BorderType [MinusOneReflectBorder]

	Border type used when padding. Possible values:

	
	ConstantBorder: pad with BorderValue

	
	ReplicateBorder: last element is replicated throughout, like aaaaaa|abcdefgh|hhhhhhh

	
	ReflectBorder: border will be mirror reflection of the border elements, like fedcba|abcdefgh|hgfedcb

	
	WrapBorder: it will look like cdefgh|abcdefgh|abcdefg

	
	MinusOneReflectBorder: same as ReflectBorder but with a slight change, like gfedcb|abcdefgh|gfedcba

	
	MeanBorder: pad with the mean color of the image

	BorderValue [0.0 0.0 0.0]

	Background color used when padding with BorderType is ConstantBorder

ROIExtractionTransformation

The transformation is typically used as the last transformation of the object
extraction pipeline to be used for blending in a BlendingTransformation.
A random object of with the label Label is extracted from the image.

	Option [default value]

	Description

	Label [-1]

	Label ID to extract (-1 means any label ID)

	LabelSegmentation [0]

	If true (1), perform connected-component
labeling to the label to obtain object ROIs

	Margin [0]

	Margin to keep around the object (in pixels)

	KeepComposite [1]

	If true (1), the extracted object label remains
composite. Otherwise, the label is reduced to a
single value

When LabelSegmentation is 0, this transformation directly extracts one of
the annotation ROI whose label matches Label. When LabelSegmentation is
true (1), the annotation ROIs are not used directly. Rather, the flattened
pixel-wise annotation is (re-)labeled using connected-component labeling to
obtain ROIs to extract. Note that the annotation ROIs are part of the
flattened pixel-wise annotation (see also the Database CompositeLabel
parameter).

Additional parameters for ROI filtering, before random selection of a single one:

	Parameter

	Default value

	Description

	MinSize

	0

	Minimum number of pixels than can constitute a bounding box.
Bounding boxes with fewer than MinSize pixels are discarded

	FilterMinHeight

	0

	Minimum height of the ROI to keep it

	FilterMinWidth

	0

	Minimum width of the ROI to keep it

	FilterMinAspectRatio

	0.0

	Minimum aspect ratio (width/height) of the ROI to keep it (default is 0.0 = no minimum)

	FilterMaxAspectRatio

	0.0

	Maximum aspect ratio (width/height) of the ROI to keep it (default is 0.0 = no minimum)

	MergeMaxHDist

	1

	Maximum horizontal distance for merging (in pixels)

	MergeMaxVDist

	1

	Maximum vertical distance for merging (in pixels)

Note that these parameters applies only when LabelSegmentation is true (1).

RandomAffineTransformation

Apply a global random affine transformation to the values of the image.

	Option [default value]

	Description

	GainRange [1.0 1.0]

	Random gain (\(\alpha\)) range (identical for all channels)

	GainRange[*] [1.0 1.0]

	Random gain (\(\alpha\)) range for channel *. Mutually exclusive with GainRange. If any specified, a different random gain will always be sampled for each channel. Default gain is 1.0 (no gain) for missing channels

	
	The gain control the contrast of the image

	BiasRange [0.0 0.0]

	Random bias (\(\beta\)) range (identical for all channels)

	BiasRange[*] [0.0 0.0]

	Random bias (\(\beta\)) range for channel *. Mutually exclusive with BiasRange. If any specified, a different random bias will always be sampled for each channel. Default bias is 0.0 (no bias) for missing channels

	
	The bias control the brightness of the image

	GammaRange [1.0 1.0]

	Random gamma (\(\gamma\)) range (identical for all channels)

	GammaRange[*] [1.0 1.0]

	Random gamma (\(\gamma\)) range for channel *. Mutually exclusive with GammaRange. If any specified, a different random gamma will always be sampled for each channel. Default gamma is 1.0 (no change) for missing channels

	
	The gamma control more or less the exposure of the image

	GainVarProb [1.0]

	Probability to have a gain variation for each channel. If only one value is specified, the same probability applies to all the channels. In this case, the same gain variation will be sampled for all the channels only if a single range if specified for all the channels using GainRange. If more than one value is specified, a different random gain will always be sampled for each channel, even if the probabilities and ranges are identical

	BiasVarProb [1.0]

	Probability to have a bias variation for each channel. If only one value is specified, the same probability applies to all the channels. In this case, the same bias variation will be sampled for all the channels only if a single range if specified for all the channels using BiasRange. If more than one value is specified, a different random bias will always be sampled for each channel, even if the probabilities and ranges are identical

	GammaVarProb [1.0]

	Probability to have a gamma variation for each channel. If only one value is specified, the same probability applies to all the channels. In this case, the same gamma variation will be sampled for all the channels only if a single range if specified for all the channels using GammaRange. If more than one value is specified, a different random gamma will always be sampled for each channel, even if the probabilities and ranges are identical

	DisjointGamma [0]

	If true, gamma variation and gain/bias variation are mutually exclusive. The probability to have a random gamma variation is therefore GammaVarProb and the probability to have a gain/bias variation is 1-GammaVarProb.

	ChannelsMask []

	If not empty, specifies on which channels the transformation is applied. For example, to apply the transformation only to the first and third channel, set ChannelsMask to 1 0 1

The equation of the transformation is:

\[\begin{split}S =
 \begin{cases}
 \text{numeric_limits<T>::max()} & \text{if } \text{is_integer<T>} \\
 1.0 & \text{otherwise}
 \end{cases}\end{split}\]

\[v(i,j) = \text{cv::saturate_cast<T>}\left(\alpha \left(\frac{v(i,j)}{S}\right)^{\gamma} S + \beta.S\right)\]

RangeAffineTransformation

Apply an affine transformation to the values of the image.

	Option [default value]

	Description

	FirstOperator

	First operator, can be Plus, Minus, Multiplies, Divides

	FirstValue

	First value

	SecondOperator [Plus]

	Second operator, can be Plus, Minus, Multiplies, Divides

	SecondValue [0.0]

	Second value

The final operation is the following:

\[\begin{split}f(x) = \left(x\;\substack{o\\op_{1st}}\;val_{1st}\right)\;
\substack{o\\op_{2nd}}\;val_{2nd}\end{split}\]

RangeClippingTransformation

Clip the value range of the image.

	Option [default value]

	Description

	RangeMin [\(min(data)\)]

	Image values below RangeMin are clipped to 0

	RangeMax [\(max(data)\)]

	Image values above RangeMax are clipped to 1 (or the maximum integer value of the data type)

RescaleTransformation

Rescale the image to a specified size.

	Option [default value]

	Description

	Width

	Width of the rescaled image

	Height

	Height of the rescaled image

	KeepAspectRatio [0]

	If true, keeps the aspect ratio of the image

	ResizeToFit [1]

	If true, resize along the longest dimension when KeepAspectRatio is true

ReshapeTransformation

Reshape the data to a specified size.

	Option [default value]

	Description

	NbRows

	New number of rows

	NbCols [0]

	New number of cols (0 = no check)

	NbChannels [0]

	New number of channels (0 = no change)

SliceExtractionTransformation

Extract a slice from an image.

	Option [default value]

	Description

	Width

	Width of the slice to extract

	Height

	Height of the slice to extract

	OffsetX [0]

	X offset of the slice to extract

	OffsetY [0]

	Y offset of the slice to extract

	RandomOffsetX [0]

	If true, the X offset is chosen randomly

	RandomOffsetY [0]

	If true, the Y offset is chosen randomly

	RandomRotation [0]

	If true, extract randomly rotated slices

	RandomRotationRange [0.0 360.0]

	Range of the random rotations, in degrees, counterclockwise (if RandomRotation is enabled)

	RandomScaling [0]

	If true, extract randomly scaled slices

	RandomScalingRange [0.8 1.2]

	Range of the random scaling (if RandomRotation is enabled)

	AllowPadding [0]

	If true, zero-padding is allowed if the image is smaller than the slice to extract

	BorderType [MinusOneReflectBorder]

	Border type used when padding. Possible values:

	
	ConstantBorder: pad with BorderValue

	
	ReplicateBorder: last element is replicated throughout, like aaaaaa|abcdefgh|hhhhhhh

	
	ReflectBorder: border will be mirror reflection of the border elements, like fedcba|abcdefgh|hgfedcb

	
	WrapBorder: it will look like cdefgh|abcdefgh|abcdefg

	
	MinusOneReflectBorder: same as ReflectBorder but with a slight change, like gfedcb|abcdefgh|gfedcba

	
	MeanBorder: pad with the mean color of the image

	BorderValue [0.0 0.0 0.0]

	Background color used when padding with BorderType is ConstantBorder

StripeRemoveTransformation

Remove one or several stripe(s) (a group of rows or columns) from 2D data.

	Option [default value]

	Description

	Axis

	Axis of the stripe (0 = columns, 1 = rows)

	Offset

	Offset of the beginning of the stripe, in number of rows or columns

	Length

	Length of the stripe, in number of rows or columns (a length of 1 means a single row or column will be removed)

	RandomOffset [0]

	If true (1), the stripe offset will be random along the chosen axis

	NbIterations [1]

	Number of stripes to remove

	StepOffset [Offset]

	Offset between successive stripes, when NbIterations > 1, not taking into account the length of the stripes

ThresholdTransformation

Apply a thresholding transformation to the image. This transformation is
also useful for post-processing.

	Option [default value]

	Description

	Threshold

	Threshold value

	OtsuMethod [0]

	Use Otsu’s method to determine the optimal threshold (if true, the Threshold value is ignored)

	Operation [Binary]

	Thresholding operation to apply. Can be:

	
	Binary

	
	BinaryInverted

	
	Truncate

	
	ToZero

	
	ToZeroInverted

	MaxValue [1.0]

	Max. value to use with Binary and BinaryInverted operations

TrimTransformation

Trim the image.

	Option [default value]

	Description

	NbLevels

	Number of levels for the color discretization of the image

	Method [Discretize]

	Possible values are:

	
	Reduce: discretization using K-means

	
	Discretize: simple discretization

WallisFilterTransformation

Apply Wallis filter to the image.

	Option [default value]

	Description

	Size

	Size of the filter

	Mean [0.0]

	Target mean value

	StdDev [1.0]

	Target standard deviation

	PerChannel [0]

	If true, apply Wallis filter to each channel individually (this parameter is meaningful only if Size is 0)

 Network Layers

Network Layers

Layer definition

Common set of parameters for any kind of layer.

	Option [default value]

	Description

	Input

	Name of the section(s) for the input layer(s). Comma separated

	Type

	Type of the layer. Can be any of the type described below

	Model [DefaultModel]

	Layer model to use

	DataType [DefaultDataType]

	Layer data type to use. Please note that some layers may not support every data type.

	ConfigSection []

	Name of the configuration section for layer

Weight fillers

Fillers to initialize weights and biases in the different type of layer.

Usage example:

[conv1]
...
WeightsFiller=NormalFiller
WeightsFiller.Mean=0.0
WeightsFiller.StdDev=0.05
...

The initial weights distribution for each layer can be checked in the
weights_init folder, with an example shown in figure
[fig:weightsInitDistrib].

[image: Initial weights distribution of a layer using a normal distribution (``NormalFiller``) with a 0 mean and a 0.05 standard deviation.]

Initial weights distribution of a layer using a normal distribution
(NormalFiller) with a 0 mean and a 0.05 standard deviation.

ConstantFiller

Fill with a constant value.

	Option

	Description

	FillerName.Value

	Value for the filling

HeFiller

Fill with an normal distribution with normalized variance taking into
account the rectifier nonlinearity [HZRS15]. This
filler is sometimes referred as MSRA filler.

	Option [default value]

	Description

	FillerName.VarianceNorm [FanIn]

	Normalization, can be FanIn, Average or FanOut

	FillerName.Scaling [1.0]

	Scaling factor

Use a normal distribution with standard deviation
\(\sqrt{\frac{2.0}{n}}\).

	\(n\) = \(fan\text{-}in\) with FanIn, resulting in
\(Var(W)=\frac{2}{fan\text{-}in}\)

	\(n\) = \(\frac{(fan\text{-}in + fan\text{-}out)}{2}\)
with Average, resulting in
\(Var(W)=\frac{4}{fan\text{-}in + fan\text{-}out}\)

	\(n\) = \(fan\text{-}out\) with FanOut, resulting in
\(Var(W)=\frac{2}{fan\text{-}out}\)

NormalFiller

Fill with a normal distribution.

	Option [default value]

	Description

	FillerName.Mean [0.0]

	Mean value of the distribution

	FillerName.StdDev [1.0]

	Standard deviation of the distribution

UniformFiller

Fill with an uniform distribution.

	Option [default value]

	Description

	FillerName.Min [0.0]

	Min. value

	FillerName.Max [1.0]

	Max. value

XavierFiller

Fill with an uniform distribution with normalized variance
[GB10].

	Option [default value]

	Description

	FillerName.VarianceNorm [FanIn]

	Normalization, can be FanIn, Average or FanOut

	FillerName.Distribution [Uniform]

	Distribution, can be Uniform or Normal

	FillerName.Scaling [1.0]

	Scaling factor

Use an uniform distribution with interval \([-scale,scale]\), with
\(scale = \sqrt{\frac{3.0}{n}}\).

	\(n\) = \(fan\text{-}in\) with FanIn, resulting in
\(Var(W)=\frac{1}{fan\text{-}in}\)

	\(n\) = \(\frac{(fan\text{-}in + fan\text{-}out)}{2}\)
with Average, resulting in
\(Var(W)=\frac{2}{fan\text{-}in + fan\text{-}out}\)

	\(n\) = \(fan\text{-}out\) with FanOut, resulting in
\(Var(W)=\frac{1}{fan\text{-}out}\)

Weight solvers

SGDSolver_Frame

SGD Solver for Frame models.

	Option [default value]

	Description

	SolverName.LearningRate [0.01]

	Learning rate

	SolverName.Momentum [0.0]

	Momentum

	SolverName.Decay [0.0]

	Decay

	SolverName.LearningRatePolicy [None]

	Learning rate decay policy. Can be any of None, StepDecay, ExponentialDecay, InvTDecay, PolyDecay

	SolverName.LearningRateStepSize [1]

	Learning rate step size (in number of stimuli)

	SolverName.LearningRateDecay [0.1]

	Learning rate decay

	SolverName.Clamping [0]

	If true, clamp the weights and bias between -1 and 1

	SolverName.Power [0.0]

	Polynomial learning rule power parameter

	SolverName.MaxIterations [0.0]

	Polynomial learning rule maximum number of iterations

The learning rate decay policies are the following:

	StepDecay: every SolverName.LearningRateStepSize stimuli,
the learning rate is reduced by a factor
SolverName.LearningRateDecay;

	ExponentialDecay: the learning rate is
\(\alpha = \alpha_{0}\exp(-k t)\), with \(\alpha_{0}\) the
initial learning rate SolverName.LearningRate, \(k\) the
rate decay SolverName .LearningRateDecay and \(t\) the step
number (one step every SolverName.LearningRateStepSize
stimuli);

	InvTDecay: the learning rate is
\(\alpha = \alpha_{0} / (1 + k t)\), with \(\alpha_{0}\) the
initial learning rate SolverName.LearningRate, \(k\) the
rate decay SolverName.LearningRateDecay and \(t\) the step
number (one step every SolverName.LearningRateStepSize
stimuli).

	InvDecay: the learning rate is
\(\alpha = \alpha_{0} * (1 + k t)^{-n}\), with \(\alpha_{0}\)
the initial learning rate SolverName.LearningRate, \(k\)
the rate decay SolverName.LearningRateDecay, \(t\) the
current iteration and \(n\) the power parameter
SolverName.Power

	PolyDecay: the learning rate is
\(\alpha = \alpha_{0} * (1 - \frac{k}{t})^n\), with
\(\alpha_{0}\) the initial learning rate
SolverName.LearningRate, \(k\) the current iteration,
\(t\) the maximum number of iteration
SolverName.MaxIterations and \(n\) the power parameter
SolverName.Power

SGDSolver_Frame_CUDA

SGD Solver for Frame_CUDA models.

	Option [default value]

	Description

	SolverName.LearningRate [0.01]

	Learning rate

	SolverName.Momentum [0.0]

	Momentum

	SolverName.Decay [0.0]

	Decay

	SolverName.LearningRatePolicy [None]

	Learning rate decay policy. Can be any of None, StepDecay, ExponentialDecay, InvTDecay

	SolverName.LearningRateStepSize [1]

	Learning rate step size (in number of stimuli)

	SolverName.LearningRateDecay [0.1]

	Learning rate decay

	SolverName.Clamping [0]

	If true, clamp the weights and bias between -1 and 1

The learning rate decay policies are identical to the ones in the
SGDSolver_Frame solver.

AdamSolver_Frame

Adam Solver for Frame models [KB14].

	Option [default value]

	Description

	SolverName.LearningRate [0.001]

	Learning rate (stepsize)

	SolverName.Beta1 [0.9]

	Exponential decay rate of these moving average of the first moment

	SolverName.Beta2 [0.999]

	Exponential decay rate of these moving average of the second moment

	SolverName.Epsilon [1.0e-8]

	Epsilon

AdamSolver_Frame_CUDA

Adam Solver for Frame_CUDA models [KB14].

	Option [default value]

	Description

	SolverName.LearningRate [0.001]

	Learning rate (stepsize)

	SolverName.Beta1 [0.9]

	Exponential decay rate of these moving average of the first moment

	SolverName.Beta2 [0.999]

	Exponential decay rate of these moving average of the second moment

	SolverName.Epsilon [1.0e-8]

	Epsilon

Activation functions

Activation function to be used at the output of layers.

Usage example:

[conv1]
...
ActivationFunction=Rectifier
ActivationFunction.LeakSlope=0.01
ActivationFunction.Clipping=20
...

Logistic

Logistic activation function.

LogisticWithLoss

Logistic with loss activation function.

Rectifier

Rectifier or ReLU activation function.

	Option [default value]

	Description

	ActivationFunction.LeakSlope [0.0]

	Leak slope for negative inputs

	ActivationFunction.Clipping [0.0]

	Clipping value for positive outputs

Saturation

Saturation activation function.

Softplus

Softplus activation function.

Tanh

Tanh activation function.

Computes \(y = tanh(\alpha x)\).

	Option [default value]

	Description

	ActivationFunction.Alpha [1.0]

	\(\alpha\) parameter

TanhLeCun

Tanh activation function with an \(\alpha\) parameter of
\(1.7159 \times (2.0/3.0)\).

Anchor

Anchor layer for Faster R-CNN or Single Shot Detector.

	Option [default value]

	Description

	Input

	This layer takes one or two inputs. The total number of input channels must be ScoresCls + 4, with ScoresCls being equal to 1 or 2.

	Anchor[*]

	Anchors definition. For each anchor, there must be two space-separated values: the root area and the aspect ratio.

	ScoresCls

	Number of classes per anchor. Must be 1 (if the scores input uses logistic regression) or 2 (if the scores input is a two-class softmax layer)

	FeatureMapWidth [StimuliProvider.Width]

	Reference width use to scale anchors coordinate.

	FeatureMapHeight [StimuliProvider.Height]

	Reference height use to scale anchors coordinate.

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	PositiveIoU [0.7]

	all Frame

	Assign a positive label for anchors whose IoU overlap is higher than PositiveIoU with any ground-truth box

	NegativeIoU [0.3]

	all Frame

	Assign a negative label for non-positive anchors whose IoU overlap is lower than NegativeIoU for all ground-truth boxes

	LossLambda [10.0]

	all Frame

	Balancing parameter \(\lambda\)

	LossPositiveSample [128]

	all Frame

	Number of random positive samples for the loss computation

	LossNegativeSample [128]

	all Frame

	Number of random negative samples for the loss computation

Usage example:

; RPN network: cls layer
[scores]
Input=...
Type=Conv
KernelWidth=1
KernelHeight=1
; 18 channels for 9 anchors
NbOutputs=18
...

[scores.softmax]
Input=scores
Type=Softmax
NbOutputs=[scores]NbOutputs
WithLoss=1

; RPN network: coordinates layer
[coordinates]
Input=...
Type=Conv
KernelWidth=1
KernelHeight=1
; 36 channels for 4 coordinates x 9 anchors
NbOutputs=36
...

; RPN network: anchors
[anchors]
Input=scores.softmax,coordinates
Type=Anchor
ScoresCls=2 ; using a two-class softmax for the scores
Anchor[0]=32 1.0
Anchor[1]=48 1.0
Anchor[2]=64 1.0
Anchor[3]=80 1.0
Anchor[4]=96 1.0
Anchor[5]=112 1.0
Anchor[6]=128 1.0
Anchor[7]=144 1.0
Anchor[8]=160 1.0
ConfigSection=anchors.config

[anchors.config]
PositiveIoU=0.7
NegativeIoU=0.3
LossLambda=1.0

Outputs remapping

Outputs remapping allows to convert scores and coordinates output
feature maps layout from another ordering that the one used in the N2D2
Anchor layer, during weights import/export.

For example, lets consider that the imported weights corresponds to the
following output feature maps ordering:

0 anchor[0].y
1 anchor[0].x
2 anchor[0].h
3 anchor[0].w
4 anchor[1].y
5 anchor[1].x
6 anchor[1].h
7 anchor[1].w
8 anchor[2].y
9 anchor[2].x
10 anchor[2].h
11 anchor[2].w

The output feature maps ordering required by the Anchor layer is:

0 anchor[0].x
1 anchor[1].x
2 anchor[2].x
3 anchor[0].y
4 anchor[1].y
5 anchor[2].y
6 anchor[0].w
7 anchor[1].w
8 anchor[2].w
9 anchor[0].h
10 anchor[1].h
11 anchor[2].h

The feature maps ordering can be changed during weights import/export:

; RPN network: coordinates layer
[coordinates]
Input=...
Type=Conv
KernelWidth=1
KernelHeight=1
; 36 channels for 4 coordinates x 9 anchors
NbOutputs=36
...
ConfigSection=coordinates.config

[coordinates.config]
WeightsExportFormat=HWCO ; Weights format used by TensorFlow
OutputsRemap=1:4,0:4,3:4,2:4

BatchNorm

Batch Normalization layer [IS15].

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	ActivationFunction []

	Activation function. Can be any of Logistic, LogisticWithLoss, Rectifier, Softplus, TanhLeCun, Linear, Saturation or Tanh
(none by default)

	ScalesSharing []

	Share the scales with an other layer

	BiasesSharing []

	Share the biases with an other layer

	MeansSharing []

	Share the means with an other layer

	VariancesSharing []

	Share the variances with an other layer

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	Solvers.*

	all Frame

	Any solver parameters

	ScaleSolver.*

	all Frame

	Scale solver parameters, take precedence over the Solvers.* parameters

	BiasSolver.*

	all Frame

	Bias solver parameters, take precedence over the Solvers.* parameters

	Epsilon [0.0]

	all Frame

	Epsilon value used in the batch normalization formula. If 0.0, automatically choose the minimum possible value.

	MovingAverageMomentum [0.1]

	all Frame

	MovingAverageMomentum: used for the moving average of batch-wise means and standard deviations during training. The closer to 1.0, the more it will depend on the last batch.

Conv

Convolutional layer.

	Option [default value]

	Description

	KernelWidth

	Width of the kernels

	KernelHeight

	Height of the kernels

	KernelDepth []

	Depth of the kernels (implies 3D kernels)

	KernelSize []

	Kernels size (implies 2D square kernels)

	KernelDims []

	List of space-separated dimensions for N-D kernels

	NbOutputs

	Number of output channels

	SubSampleX [1]

	X-axis subsampling factor of the output feature
maps

	SubSampleY [1]

	Y-axis subsampling factor of the output feature
maps

	SubSampleZ []

	Z-axis subsampling factor of the output feature
maps

	SubSample [1]

	Subsampling factor of the output feature maps

	SubSampleDims []

	List of space-separated subsampling dimensions
for N-D kernels

	StrideX [1]

	X-axis stride of the kernels

	StrideY [1]

	Y-axis stride of the kernels

	StrideZ []

	Z-axis stride of the kernels

	Stride [1]

	Stride of the kernels

	StrideDims []

	List of space-separated stride dimensions for N-D
kernels

	PaddingX [0]

	X-axis input padding

	PaddingY [0]

	Y-axis input padding

	PaddingZ []

	Z-axis input padding

	Padding [0]

	Input padding

	PaddingDims []

	List of space-separated padding dimensions for
N-D kernels

	DilationX [1]

	X-axis dilation of the kernels

	DilationY [1]

	Y-axis dilation of the kernels

	DilationZ []

	Z-axis dilation of the kernels

	Dilation [1]

	Dilation of the kernels

	DilationDims []

	List of space-separated dilation dimensions for
N-D kernels

	ActivationFunction
[]

	Activation function. Can be any of Logistic,
LogisticWithLoss, Rectifier, Softplus,
TanhLeCun, Linear, Saturation or
Tanh (none by default)

	WeightsFiller
[NormalFiller(0.0, 0.05)]

	Weights initial values filler

	BiasFiller
[NormalFiller(0.0, 0.05)]

	Biases initial values filler

	Mapping.NbGroups []

	Mapping: number of groups (mutually exclusive
with all other Mapping.* options)

	Mapping.ChannelsPerGroup
[]

	Mapping: number of channels per group (mutually
exclusive with all other Mapping.* options)

	Mapping.SizeX [1]

	Mapping canvas pattern default width

	Mapping.SizeY [1]

	Mapping canvas pattern default height

	Mapping.Size [1]

	Mapping canvas pattern default size (mutually
exclusive with Mapping.SizeX and
Mapping.SizeY)

	Mapping.StrideX [1]

	Mapping canvas default X-axis step

	Mapping.StrideY [1]

	Mapping canvas default Y-axis step

	Mapping.Stride [1]

	Mapping canvas default step (mutually exclusive
with``Mapping.StrideX`` and Mapping.StrideY)

	Mapping.OffsetX [0]

	Mapping canvas default X-axis offset

	Mapping.OffsetY [0]

	Mapping canvas default Y-axis offset

	Mapping.Offset [0]

	Mapping canvas default offset (mutually exclusive
with Mapping.OffsetX and Mapping.OffsetY)

	Mapping.NbIterations [0]

	Mapping canvas pattern default number of
iterations (0 means no limit)

	Mapping(in).SizeX [1]

	Mapping canvas pattern default width for
input layer in

	Mapping(in).SizeY [1]

	Mapping canvas pattern default height for
input layer in

	Mapping(in).Size [1]

	Mapping canvas pattern default size for
input layer in (mutually exclusive with
Mapping(in).SizeX and Mapping(in).SizeY)

	Mapping(in).StrideX [1]

	Mapping canvas default X-axis step for
input layer in

	Mapping(in).StrideY [1]

	Mapping canvas default Y-axis step for
input layer in

	Mapping(in).Stride [1]

	Mapping canvas default step for input layer in
(mutually exclusive with Mapping(in).StrideX
and Mapping(in).StrideY)

	Mapping(in).OffsetX [0]

	Mapping canvas default X-axis offset for
input layer in

	Mapping(in).OffsetY [0]

	Mapping canvas default Y-axis offset for
input layer in

	Mapping(in).Offset [0]

	Mapping canvas default offset for input
layer in (mutually exclusive with
Mapping(in).OffsetX and
Mapping(in).OffsetY)

	Mapping(in).NbIterations
[0]

	Mapping canvas pattern default number of
iterations for input layer in (0 means no
limit)

	WeightsSharing []

	Share the weights with an other layer

	BiasesSharing []

	Share the biases with an other layer

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	NoBias [0]

	all Frame

	If true, don’t use bias

	Solvers.*

	all Frame

	Any solver parameters

	WeightsSolver.*

	all Frame

	Weights solver parameters, take precedence over the Solvers.* parameters

	BiasSolver.*

	all Frame

	Bias solver parameters, take precedence over the Solvers.* parameters

	WeightsExportFormat [OCHW]

	all Frame

	Weights import/export format. Can be OCHW or OCHW, with O the output feature map, C the input feature map (channel), H the kernel row and W the kernel column, in the order of the outermost dimension (in the leftmost position) to the innermost dimension (in the rightmost position)

	WeightsExportFlip [0]

	all Frame

	If true, import/export flipped kernels

Configuration parameters (Spike models)

Experimental option (implementation may be wrong or susceptible to
change)

	Option [default value]

	Model(s)

	Description

	IncomingDelay [1 TimePs;100 TimeFs]

	all Spike

	Synaptic incoming delay \(w_{delay}\)

	Threshold [1.0]

	Spike, Spike_RRAM

	Threshold of the neuron \(I_{thres}\)

	BipolarThreshold [1]

	Spike, Spike_RRAM

	If true, the threshold is also applied to the absolute value of negative values (generating negative spikes)

	Leak [0.0]

	Spike, Spike_RRAM

	Neural leak time constant \(\tau_{leak}\) (if 0, no leak)

	Refractory [0.0]

	Spike, Spike_RRAM

	Neural refractory period \(T_{refrac}\)

	WeightsRelInit [0.0;0.05]

	Spike

	Relative initial synaptic weight \(w_{init}\)

	WeightsMinMean [1;0.1]

	Spike_RRAM

	Mean minimum synaptic weight \(w_{min}\)

	WeightsMaxMean [100;10.0]

	Spike_RRAM

	Mean maximum synaptic weight \(w_{max}\)

	WeightsMinVarSlope [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMinVarOrigin [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMaxVarSlope [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMaxVarOrigin [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsSetProba [1.0]

	Spike_RRAM

	Intrinsic SET switching probability \(P_{SET}\) (upon receiving a SET programming pulse). Assuming uniform statistical distribution (not well supported by experiments on RRAM)

	WeightsResetProba [1.0]

	Spike_RRAM

	Intrinsic RESET switching probability \(P_{RESET}\) (upon receiving a RESET programming pulse). Assuming uniform statistical distribution (not well supported by experiments on RRAM)

	SynapticRedundancy [1]

	Spike_RRAM

	Synaptic redundancy (number of RRAM device per synapse)

	BipolarWeights [0]

	Spike_RRAM

	Bipolar weights

	BipolarIntegration [0]

	Spike_RRAM

	Bipolar integration

	LtpProba [0.2]

	Spike_RRAM

	Extrinsic STDP LTP probability (cumulative with intrinsic SET switching probability \(P_{SET}\))

	LtdProba [0.1]

	Spike_RRAM

	Extrinsic STDP LTD probability (cumulative with intrinsic RESET switching probability \(P_{RESET}\))

	StdpLtp [1000 TimePs]

	Spike_RRAM

	STDP LTP time window \(T_{LTP}\)

	InhibitRefractory [0 TimePs]

	Spike_RRAM

	Neural lateral inhibition period \(T_{inhibit}\)

	EnableStdp [1]

	Spike_RRAM

	If false, STDP is disabled (no synaptic weight change)

	RefractoryIntegration [1]

	Spike_RRAM

	If true, reset the integration to 0 during the refractory period

	DigitalIntegration [0]

	Spike_RRAM

	If false, the analog value of the devices is integrated, instead of their binary value

Deconv

Deconvolution layer.

	Option [default value]

	Description

	KernelWidth

	Width of the kernels

	KernelHeight

	Height of the kernels

	KernelDepth []

	Depth of the kernels (implies 3D kernels)

	KernelSize []

	Kernels size (implies 2D square kernels)

	KernelDims []

	List of space-separated dimensions for N-D kernels

	NbOutputs

	Number of output channels

	SubSampleX [1]

	X-axis subsampling factor of the output feature
maps

	SubSampleY [1]

	Y-axis subsampling factor of the output feature
maps

	SubSampleZ []

	Z-axis subsampling factor of the output feature
maps

	SubSample [1]

	Subsampling factor of the output feature maps

	SubSampleDims []

	List of space-separated subsampling dimensions
for N-D kernels

	StrideX [1]

	X-axis stride of the kernels

	StrideY [1]

	Y-axis stride of the kernels

	StrideZ []

	Z-axis stride of the kernels

	Stride [1]

	Stride of the kernels

	StrideDims []

	List of space-separated stride dimensions for N-D
kernels

	PaddingX [0]

	X-axis input padding

	PaddingY [0]

	Y-axis input padding

	PaddingZ []

	Z-axis input padding

	Padding [0]

	Input padding

	PaddingDims []

	List of space-separated padding dimensions for
N-D kernels

	DilationX [1]

	X-axis dilation of the kernels

	DilationY [1]

	Y-axis dilation of the kernels

	DilationZ []

	Z-axis dilation of the kernels

	Dilation [1]

	Dilation of the kernels

	DilationDims []

	List of space-separated dilation dimensions for
N-D kernels

	ActivationFunction
[]

	Activation function. Can be any of Logistic,
LogisticWithLoss, Rectifier, Softplus,
TanhLeCun, Linear, Saturation or
Tanh (none by default)

	WeightsFiller
[NormalFiller(0.0, 0.05)]

	Weights initial values filler

	BiasFiller
[NormalFiller(0.0, 0.05)]

	Biases initial values filler

	Mapping.NbGroups []

	Mapping: number of groups (mutually exclusive
with all other Mapping.* options)

	Mapping.ChannelsPerGroup
[]

	Mapping: number of channels per group (mutually
exclusive with all other Mapping.* options)

	Mapping.SizeX [1]

	Mapping canvas pattern default width

	Mapping.SizeY [1]

	Mapping canvas pattern default height

	Mapping.Size [1]

	Mapping canvas pattern default size (mutually
exclusive with Mapping.SizeX and
Mapping.SizeY)

	Mapping.StrideX [1]

	Mapping canvas default X-axis step

	Mapping.StrideY [1]

	Mapping canvas default Y-axis step

	Mapping.Stride [1]

	Mapping canvas default step (mutually exclusive
with``Mapping.StrideX`` and Mapping.StrideY)

	Mapping.OffsetX [0]

	Mapping canvas default X-axis offset

	Mapping.OffsetY [0]

	Mapping canvas default Y-axis offset

	Mapping.Offset [0]

	Mapping canvas default offset (mutually exclusive
with Mapping.OffsetX and Mapping.OffsetY)

	Mapping.NbIterations [0]

	Mapping canvas pattern default number of
iterations (0 means no limit)

	Mapping(in).SizeX [1]

	Mapping canvas pattern default width for
input layer in

	Mapping(in).SizeY [1]

	Mapping canvas pattern default height for
input layer in

	Mapping(in).Size [1]

	Mapping canvas pattern default size for
input layer in (mutually exclusive with
Mapping(in).SizeX and Mapping(in).SizeY)

	Mapping(in).StrideX [1]

	Mapping canvas default X-axis step for
input layer in

	Mapping(in).StrideY [1]

	Mapping canvas default Y-axis step for
input layer in

	Mapping(in).Stride [1]

	Mapping canvas default step for input layer in
(mutually exclusive with Mapping(in).StrideX
and Mapping(in).StrideY)

	Mapping(in).OffsetX [0]

	Mapping canvas default X-axis offset for
input layer in

	Mapping(in).OffsetY [0]

	Mapping canvas default Y-axis offset for
input layer in

	Mapping(in).Offset [0]

	Mapping canvas default offset for input
layer in (mutually exclusive with
Mapping(in).OffsetX and
Mapping(in).OffsetY)

	Mapping(in).NbIterations
[0]

	Mapping canvas pattern default number of
iterations for input layer in (0 means no
limit)

	WeightsSharing []

	Share the weights with an other layer

	BiasesSharing []

	Share the biases with an other layer

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	NoBias [0]

	all Frame

	If true, don’t use bias

	BackPropagate [1]

	all Frame

	If true, enable backpropagation

	Solvers.*

	all Frame

	Any solver parameters

	WeightsSolver.*

	all Frame

	Weights solver parameters, take precedence over the Solvers.* parameters

	BiasSolver.*

	all Frame

	Bias solver parameters, take precedence over the Solvers.* parameters

	WeightsExportFormat [OCHW]

	all Frame

	Weights import/export format. Can be OCHW or OCHW, with O the output feature map, C the input feature map (channel), H the kernel row and W the kernel column, in the order of the outermost dimension (in the leftmost position) to the innermost dimension (in the rightmost position)

	WeightsExportFlip [0]

	all Frame

	If true, import/export flipped kernels

Dropout

Dropout layer [SHK+12].

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	Dropout [0.5]

	all Frame

	The probability with which the value from input would be dropped

ElemWise

Element-wise operation layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	Operation [Sum]

	Type of operation (Sum, AbsSum, EuclideanSum, Prod, or Max)

	Weights [1.0]

	Weights for the Sum, AbsSum, and EuclideanSum operation, in the same order as the inputs

	Shifts [0.0]

	Shifts for the Sum and EuclideanSum operation, in the same order as the inputs

	ActivationFunction []

	Activation function. Can be any of Logistic, LogisticWithLoss, Rectifier, Softplus, TanhLeCun, Linear, Saturation or Tanh
(none by default)

Given \(N\) input tensors \(T_{i}\), performs the following
operation:

Sum operation

\(T_{out} = \sum_{1}^{N}(w_{i} T_{i} + s_{i})\)

AbsSum operation

\(T_{out} = \sum_{1}^{N}(w_{i} |T_{i}|)\)

EuclideanSum operation

\(T_{out} = \sqrt{\sum_{1}^{N}\left(w_{i} T_{i} + s_{i}\right)^{2}}\)

Prod operation

\(T_{out} = \prod_{1}^{N}(T_{i})\)

Max operation

\(T_{out} = MAX_{1}^{N}(T_{i})\)

Examples

Sum of two inputs (\(T_{out} = T_{1} + T_{2}\)):

[elemwise_sum]
Input=layer1,layer2
Type=ElemWise
NbOutputs=[layer1]NbOutputs
Operation=Sum

Weighted sum of two inputs, by a factor 0.5 for layer1 and 1.0 for
layer2 (\(T_{out} = 0.5 \times T_{1} + 1.0 \times T_{2}\)):

[elemwise_weighted_sum]
Input=layer1,layer2
Type=ElemWise
NbOutputs=[layer1]NbOutputs
Operation=Sum
Weights=0.5 1.0

Single input scaling by a factor 0.5 and shifted by 0.1
(\(T_{out} = 0.5 \times T_{1}\) + 0.1):

[elemwise_scale]
Input=layer1
Type=ElemWise
NbOutputs=[layer1]NbOutputs
Operation=Sum
Weights=0.5
Shifts=0.1

Absolute value of an input (\(T_{out} = |T_{1}|\)):

[elemwise_abs]
Input=layer1
Type=ElemWise
NbOutputs=[layer1]NbOutputs
Operation=Abs

FMP

Fractional max pooling layer [Gra14].

	Option [default value]

	Description

	NbOutputs

	Number of output channels

	ScalingRatio

	Scaling ratio. The output size is \(round\left(\frac{\text{input size}}{\text{scaling ratio}}\right)\).

	ActivationFunction []

	Activation function. Can be any of Logistic, LogisticWithLoss, Rectifier, Softplus, TanhLeCun, Linear, Saturation or Tanh
(none by default)

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	Overlapping [1]

	all Frame

	If true, use overlapping regions, else use disjoint regions

	PseudoRandom [1]

	all Frame

	If true, use pseudorandom sequences, else use random sequences

Fc

Fully connected layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	WeightsFiller

	Weights initial values filler

	[NormalFiller(0.0, 0.05)]

	

	BiasFiller

	Biases initial values filler

	[NormalFiller(0.0, 0.05)]

	

	ActivationFunction []

	Activation function. Can be any of Logistic, LogisticWithLoss, Rectifier, Softplus, TanhLeCun, Linear, Saturation or Tanh
(none by default)

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	NoBias [0]

	all Frame

	If true, don’t use bias

	BackPropagate [1]

	all Frame

	If true, enable backpropagation

	Solvers.*

	all Frame

	Any solver parameters

	WeightsSolver.*

	all Frame

	Weights solver parameters, take precedence over the Solvers.* parameters

	BiasSolver.*

	all Frame

	Bias solver parameters, take precedence over the Solvers.* parameters

	DropConnect [1.0]

	Frame

	If below 1.0, fraction of synapses that are disabled with drop connect

Configuration parameters (Spike models)

	Option [default value]

	Model(s)

	Description

	IncomingDelay [1 TimePs;100 TimeFs]

	all Spike

	Synaptic incoming delay \(w_{delay}\)

	Threshold [1.0]

	Spike, Spike_RRAM

	Threshold of the neuron \(I_{thres}\)

	BipolarThreshold [1]

	Spike, Spike_RRAM

	If true, the threshold is also applied to the absolute value of negative values (generating negative spikes)

	Leak [0.0]

	Spike, Spike_RRAM

	Neural leak time constant \(\tau_{leak}\) (if 0, no leak)

	Refractory [0.0]

	Spike, Spike_RRAM

	Neural refractory period \(T_{refrac}\)

	TerminateDelta [0]

	Spike, Spike_RRAM

	Terminate delta

	WeightsRelInit [0.0;0.05]

	Spike

	Relative initial synaptic weight \(w_{init}\)

	WeightsMinMean [1;0.1]

	Spike_RRAM

	Mean minimum synaptic weight \(w_{min}\)

	WeightsMaxMean [100;10.0]

	Spike_RRAM

	Mean maximum synaptic weight \(w_{max}\)

	WeightsMinVarSlope [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMinVarOrigin [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMaxVarSlope [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsMaxVarOrigin [0.0]

	Spike_RRAM

	OXRAM specific parameter

	WeightsSetProba [1.0]

	Spike_RRAM

	Intrinsic SET switching probability \(P_{SET}\) (upon receiving a SET programming pulse). Assuming uniform statistical distribution (not well supported by experiments on RRAM)

	WeightsResetProba [1.0]

	Spike_RRAM

	Intrinsic RESET switching probability \(P_{RESET}\) (upon receiving a RESET programming pulse). Assuming uniform statistical distribution (not well supported by experiments on RRAM)

	SynapticRedundancy [1]

	Spike_RRAM

	Synaptic redundancy (number of RRAM device per synapse)

	BipolarWeights [0]

	Spike_RRAM

	Bipolar weights

	BipolarIntegration [0]

	Spike_RRAM

	Bipolar integration

	LtpProba [0.2]

	Spike_RRAM

	Extrinsic STDP LTP probability (cumulative with intrinsic SET switching probability \(P_{SET}\))

	LtdProba [0.1]

	Spike_RRAM

	Extrinsic STDP LTD probability (cumulative with intrinsic RESET switching probability \(P_{RESET}\))

	StdpLtp [1000 TimePs]

	Spike_RRAM

	STDP LTP time window \(T_{LTP}\)

	InhibitRefractory [0 TimePs]

	Spike_RRAM

	Neural lateral inhibition period \(T_{inhibit}\)

	EnableStdp [1]

	Spike_RRAM

	If false, STDP is disabled (no synaptic weight change)

	RefractoryIntegration [1]

	Spike_RRAM

	If true, reset the integration to 0 during the refractory period

	DigitalIntegration [0]

	Spike_RRAM

	If false, the analog value of the devices is integrated, instead of their binary value

LRN

Local Response Normalization (LRN) layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

The response-normalized activity \(b_{x,y}^{i}\) is given by the
expression:

\[b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum\limits_{j=max(0,i-n/2)}^{min(N-1,i+n/2)}{\left(a_{x,y}^{j}\right)^2}\right)^{\beta}}\]

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	N [5]

	all Frame

	Normalization window width in elements

	Alpha [1.0e-4]

	all Frame

	Value of the alpha variance scaling parameter in the normalization formula

	Beta [0.75]

	all Frame

	Value of the beta power parameter in the normalization formula

	K [2.0]

	all Frame

	Value of the k parameter in normalization formula

LSTM

Long Short Term Memory Layer [HS97].

Global layer parameters (Frame_CUDA models)

	Option [default value]

	Description

	SeqLength

	Maximum sequence length that the LSTM can take as an input.

	BatchSize

	Number of sequences used for a single weights actualisation process : size of the batch.

	InputDim

	Dimension of every element composing a sequence.

	HiddenSize

	Dimension of the LSTM inner state and output.

	SingleBackpropFeeding [1]

	If disabled return the full output sequence.

	Bidirectional [0]

	If enabled, build a bidirectional structure.

	AllGatesWeightsFiller

	All Gates weights initial values filler.

	AllGatesBiasFiller

	All Gates bias initial values filler.

	WeightsInputGateFiller

	Input gate previous layer and recurrent weights initial values filler. Take precedence over AllGatesWeightsFiller parameter.

	WeightsForgetGateFiller

	Forget gate previous layer and recurrent weights initial values filler. Take precedence over AllGatesWeightsFiller parameter.

	WeightsCellGateFiller

	Cell gate (or new memory) previous layer and recurrent weights initial values filler. Take precedence over AllGatesWeightsFiller parameter.

	WeightsOutputGateFiller

	Output gate previous layer and recurrent weights initial values filler. Take precedence over AllGatesWeightsFiller parameter.

	BiasInputGateFiller

	Input gate previous layer and recurrent bias initial values filler. Take precedence over AllGatesBiasFiller parameter.

	BiasRecurrentForgetGateFiller

	Forget gate recurrent bias initial values filler. Take precedence over AllGatesBiasFiller parameter. Often set to 1.0 to show better convergence performance.

	BiasPreviousLayerForgetGateFiller

	Forget gate previous layer bias initial values filler. Take precedence over AllGatesBiasFiller parameter.

	BiasCellGateFiller

	Cell gate (or new memory) previous layer and recurrent bias initial values filler. Take precedence over AllGatesBiasFiller parameter.

	BiasOutputGateFiller

	Output gate previous layer and recurrent bias initial values filler. Take precedence over AllGatesBiasFiller parameter.

	HxFiller

	Recurrent previous state initialisation. Often set to 0.0

	CxFiller

	Recurrent previous LSTM inner state initialisation. Often set to 0.0

Configuration parameters (Frame_CUDA models)

	Option [default value]

	Model(s)

	Description

	Solvers.*

	all Frame

	Any solver parameters

	Dropout [0.0]

	all Frame

	The probability with which the value from input would be dropped.

	InputMode []

	all Frame

	If enabled, drop the matrix multiplication of the input data.

	Algo [0]

	all Frame

	Allow to choose different cuDNN implementation. Can be 0 : STANDARD, 1 : STATIC, 2 : DYNAMIC. Case 1 and 2 aren’t supported yet.

Current restrictions

	Only Frame_Cuda version is supported yet.

	The implementation only support input sequences with a fixed length
associated with a single label.

	CuDNN structures requires the input data to be ordered as [1,
InputDim, BatchSize, SeqLength]. Depending on the use case (like
sequential-MNIST), the input data would need to be shuffled between
the stimuli provisder and the RNN in order to process batches of
data. No shuffling layer is yet operational. In that case, set batch
to one for first experiments.

Further development requirements

When it comes to RNN, two main factors needs to be considered to build
proper interfaces :

	Whether the input data has a variable or a fixed length over the data
base, that is to say whether the input data will have a variable or
fixed Sequence length. Of course the main strength of a RNN is to
process variable length data.

	Labelling granularity of the input data, that is to say wheteher
every elements of a sequence is labelled or the sequence itself has
only one label.

For instance, let’s consider sentences as sequences of words in which
every word would be part of a vocabulary. Sentences could have a
variable length and every element/word would have a label. In that
case, every relevant element of the output sequence from the recurrent
structure is turned into a prediction throught a fully connected layer
with a linear activation fonction and a softmax.

On the opposite, using sequential-MNIST database, the sequence length
would be the same regarding every image and there is only one label
for an image. In that case, the last element of the output sequence is
the most relevant one to be turned into a prediction as it carries the
information of the entire input sequence.

To provide flexibility according to these factors, the first
implementation choice is to set a maximum sequence length
emphSeqLength as an hyperparameter that the User provide. Variable
length senquences can be processed by padding the remaining steps of
the input sequence.

Then two cases occur as the labeling granularity is scaled at each
element of the sequence or scaled at the sequence itself:

	The sequence itself has only one label :

[image: RNN model : variable sequence length and labeling scaled at the sequence]

RNN model : variable sequence length and labeling scaled at the
sequence

The model has a fixed size with one fully connected mapped to the
relevant element of the output sequence according to the input
sequence.

	Every elements of a sequence is labelled :

[image: RNN model : variable sequence length and labeling scaled at each element of the sequence]

RNN model : variable sequence length and labeling scaled at each
element of the sequence

The model has a fixed size with one big fully connected (or Tmax fully
connected) mapped to the relevant elements of the output sequence
according to the input sequence. The remaining elements need to be
masked so it doesn’t influence longer sequences.

Development guidance

	Replace the inner local variables of LSTMCell_Frame_Cuda with a
generic layer of shuffling (on device) to enable the the process of
data batch.

	Develop some kind of label embedding within the layer to better
articulate the labeling granularity of the input data.

	Adapt structures to support the STATIC and DYNAMIC algorithm of cuDNN
functions.

Normalize

Normalize layer.

	Option [default value]

	Description

	NbOutputs

	Number of output feature maps

	Norm

	Norm to be used. Can be, L1 or L2

Padding

Padding layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	TopPadding

	Size of the top padding (positive or negative)

	BottomPadding

	Size of the bottom padding (positive or negative)

	LeftPadding

	Size of the left padding (positive or negative)

	RightPadding

	Size of the right padding (positive or negative)

The padding layer allow to insert asymmetric padding for each layer
axes.

Pool

Pooling layer.

There are two CUDA models for this cell:

Frame_CUDA, which uses CuDNN as back-end and only supports
one-to-one input to output map connection;

Frame_EXT_CUDA, which uses custom CUDA kernels and allows arbitrary
connections between input and output maps (and can therefore be used to
implement Maxout or both Maxout and Pooling simultaneously).

Maxout example

In the following INI section, one implements a Maxout between each
consecutive pair of 8 input maps:

[maxout_layer]
Input=...
Type=Pool
Model=Frame_EXT_CUDA
PoolWidth=1
PoolHeight=1
NbOutputs=4
Pooling=Max
Mapping.SizeY=2
Mapping.StrideY=2

The layer connectivity is the following:

	#

i
n
p
u
t

m
a
p

	1

	X

	
	
	

	2

	X

	
	
	

	3

	
	X

	
	

	4

	
	X

	
	

	5

	
	
	X

	

	6

	
	
	X

	

	7

	
	
	
	X

	8

	
	
	
	X

	
	1

	2

	3

	4

	# output map

	Option [default value]

	Description

	Pooling [Max]

	Type of pooling (Max or Average)

	PoolWidth

	Width of the pooling area

	PoolHeight

	Height of the pooling area

	PoolDepth []

	Depth of the pooling area (implies 3D pooling
area)

	PoolSize []

	Pooling area size (implies 2D square pooling area)

	PoolDims []

	List of space-separated dimensions for N-D pooling
area

	NbOutputs

	Number of output channels

	StrideX [1]

	X-axis stride of the pooling area

	StrideY [1]

	Y-axis stride of the pooling area

	StrideZ []

	Z-axis stride of the pooling area

	Stride [1]

	Stride of the pooling area

	StrideDims []

	List of space-separated stride dimensions for N-D
pooling area

	PaddingX [0]

	X-axis input padding

	PaddingY [0]

	Y-axis input padding

	PaddingZ []

	Z-axis input padding

	Padding [0]

	Input padding

	PaddingDims []

	List of space-separated padding dimensions for
N-D pooling area

	ActivationFunction
[]

	Activation function. Can be any of Logistic,
LogisticWithLoss, Rectifier, Softplus,
TanhLeCun, Linear, Saturation or
Tanh (none by default)

	Mapping.NbGroups []

	Mapping: number of groups (mutually exclusive
with all other Mapping.* options)

	Mapping.ChannelsPerGroup
[]

	Mapping: number of channels per group (mutually
exclusive with all other Mapping.* options)

	Mapping.SizeX [1]

	Mapping canvas pattern default width

	Mapping.SizeY [1]

	Mapping canvas pattern default height

	Mapping.Size [1]

	Mapping canvas pattern default size (mutually
exclusive with Mapping.SizeX and
Mapping.SizeY)

	Mapping.StrideX [1]

	Mapping canvas default X-axis step

	Mapping.StrideY [1]

	Mapping canvas default Y-axis step

	Mapping.Stride [1]

	Mapping canvas default step (mutually exclusive
with``Mapping.StrideX`` and Mapping.StrideY)

	Mapping.OffsetX [0]

	Mapping canvas default X-axis offset

	Mapping.OffsetY [0]

	Mapping canvas default Y-axis offset

	Mapping.Offset [0]

	Mapping canvas default offset (mutually exclusive
with Mapping.OffsetX and Mapping.OffsetY)

	Mapping.NbIterations [0]

	Mapping canvas pattern default number of
iterations (0 means no limit)

	Mapping(in).SizeX [1]

	Mapping canvas pattern default width for
input layer in

	Mapping(in).SizeY [1]

	Mapping canvas pattern default height for
input layer in

	Mapping(in).Size [1]

	Mapping canvas pattern default size for
input layer in (mutually exclusive with
Mapping(in).SizeX and Mapping(in).SizeY)

	Mapping(in).StrideX [1]

	Mapping canvas default X-axis step for
input layer in

	Mapping(in).StrideY [1]

	Mapping canvas default Y-axis step for
input layer in

	Mapping(in).Stride [1]

	Mapping canvas default step for input layer in
(mutually exclusive with Mapping(in).StrideX
and Mapping(in).StrideY)

	Mapping(in).OffsetX [0]

	Mapping canvas default X-axis offset for
input layer in

	Mapping(in).OffsetY [0]

	Mapping canvas default Y-axis offset for
input layer in

	Mapping(in).Offset [0]

	Mapping canvas default offset for input
layer in (mutually exclusive with
Mapping(in).OffsetX and
Mapping(in).OffsetY)

	Mapping(in).NbIterations
[0]

	Mapping canvas pattern default number of
iterations for input layer in (0 means no
limit)

Configuration parameters (Spike models)

	Option [default value]

	Model(s)

	Description

	IncomingDelay [1 TimePs;100 TimeFs]

	all Spike

	Synaptic incoming delay \(w_{delay}\)

	value

	
	

Rbf

Radial basis function fully connected layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	CentersFiller

	Centers initial values filler

	[NormalFiller(0.5, 0.05)]

	

	ScalingFiller

	Scaling initial values filler

	[NormalFiller(10.0, 0.05)]

	

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	Solvers.*

	all Frame

	Any solver parameters

	CentersSolver.*

	all Frame

	Centers solver parameters, take precedence over the Solvers.* parameters

	ScalingSolver.*

	all Frame

	Scaling solver parameters, take precedence over the Solvers.* parameters

	RbfApprox [None]

	Frame

	Approximation for the Gaussian function, can be any of: None, Rectangular or SemiLinear

Resize

Resize layer can be applied to change dimension of features maps or of
stimuli provider.

	Option [default value]

	Description

	NbOutputs

	Number of output feature maps

	OutputHeight

	Output height dimension

	OutputWidth

	Output width dimension

	Mode

	Resize interpolation mode. Can be, Bilinear or BilinearTF (TensorFlow implementation)

Configuration parameters

	Option [default value]

	Model(s)

	Description

	AlignCorners [True]

	all Frame

	Corner alignement mode if BilinearTF is used as interpolation mode

Softmax

Softmax layer.

	Option [default value]

	Description

	NbOutputs

	Number of output neurons

	WithLoss [0]

	Softmax followed with a multinomial logistic layer

	GroupSize [0]

	Softmax is applied on groups of outputs. The group size must be a divisor of NbOutputs parameter.

The softmax function performs the following operation, with
\(a_{x,y}^{i}\) and \(b_{x,y}^{i}\) the input and the output
respectively at position \((x,y)\) on channel \(i\):

\[b_{x,y}^{i} = \frac{\exp(a_{x,y}^{i})}{\sum\limits_{j=0}^{N}
 {\exp(a_{x,y}^{j})}}\]

and

\[\text{d}a_{x,y}^{i} = \sum\limits_{j=0}^{N}{\left(\delta_{ij}
- a_{x,y}^{i}\right) a_{x,y}^{j} \text{d}b_{x,y}^{j}}\]

When the WithLoss option is enabled, compute the gradient directly
in respect of the cross-entropy loss:

\[L_{x,y} = \sum\limits_{j=0}^{N}{t_{x,y}^{j} \log(b_{x,y}^{j})}\]

In this case, the gradient output becomes:

\[\text{d}a_{x,y}^{i} = \text{d}b_{x,y}^{i}\]

with

\[\text{d}b_{x,y}^{i} = t_{x,y}^{i} - b_{x,y}^{i}\]

Transformation

Transformation layer, which can apply any transformation described in
[sec:transformations]. Useful for fully CNN post-processing for example.

	Option [default value]

	Description

	NbOutputs

	Number of outputs

	Transformation

	Name of the transformation to apply

The Transformation options must be placed in the same section.

Usage example for fully CNNs:

[post.Transformation-thres]
Input=... ; for example, network's logistic of softmax output layer
NbOutputs=1
Type=Transformation
Transformation=ThresholdTransformation
Operation=ToZero
Threshold=0.75

[post.Transformation-morpho]
Input=post.Transformation-thres
NbOutputs=1
Type=Transformation
Transformation=MorphologyTransformation
Operation=Opening
Size=3

Threshold

Apply a thresholding.

	Option [default value]

	Description

	NbOutputs

	Number of output feature maps

	Threshold

	Threshold value

Configuration parameters (Frame models)

	Option [default value]

	Model(s)

	Description

	Operation [Binary]

	all Frame

	Thresholding operation to apply. Can be:

	
	
	Binary

	
	
	BinaryInverted

	
	
	Truncate

	
	
	ToZero

	
	
	ToZeroInverted

	MaxValue [1.0]

	all Frame

	Max. value to use with Binary and BinaryInverted operations

Unpool

Unpooling layer.

	Option [default value]

	Description

	Pooling

	Type of pooling (Max or Average)

	PoolWidth

	Width of the pooling area

	PoolHeight

	Height of the pooling area

	PoolDepth []

	Depth of the pooling area (implies 3D pooling
area)

	PoolSize []

	Pooling area size (implies 2D square pooling area)

	PoolDims []

	List of space-separated dimensions for N-D pooling
area

	NbOutputs

	Number of output channels

	ArgMax

	Name of the associated pool layer for the argmax
(the pool layer input and the unpool layer output
dimension must match)

	StrideX [1]

	X-axis stride of the pooling area

	StrideY [1]

	Y-axis stride of the pooling area

	StrideZ []

	Z-axis stride of the pooling area

	Stride [1]

	Stride of the pooling area

	StrideDims []

	List of space-separated stride dimensions for N-D
pooling area

	PaddingX [0]

	X-axis input padding

	PaddingY [0]

	Y-axis input padding

	PaddingZ []

	Z-axis input padding

	Padding [0]

	Input padding

	PaddingDims []

	List of space-separated padding dimensions for
N-D pooling area

	ActivationFunction
[]

	Activation function. Can be any of Logistic,
LogisticWithLoss, Rectifier, Softplus,
TanhLeCun, Linear, Saturation or
Tanh (none by default)

	Mapping.NbGroups []

	Mapping: number of groups (mutually exclusive
with all other Mapping.* options)

	Mapping.ChannelsPerGroup
[]

	Mapping: number of channels per group (mutually
exclusive with all other Mapping.* options)

	Mapping.SizeX [1]

	Mapping canvas pattern default width

	Mapping.SizeY [1]

	Mapping canvas pattern default height

	Mapping.Size [1]

	Mapping canvas pattern default size (mutually
exclusive with Mapping.SizeX and
Mapping.SizeY)

	Mapping.StrideX [1]

	Mapping canvas default X-axis step

	Mapping.StrideY [1]

	Mapping canvas default Y-axis step

	Mapping.Stride [1]

	Mapping canvas default step (mutually exclusive
with``Mapping.StrideX`` and Mapping.StrideY)

	Mapping.OffsetX [0]

	Mapping canvas default X-axis offset

	Mapping.OffsetY [0]

	Mapping canvas default Y-axis offset

	Mapping.Offset [0]

	Mapping canvas default offset (mutually exclusive
with Mapping.OffsetX and Mapping.OffsetY)

	Mapping.NbIterations [0]

	Mapping canvas pattern default number of
iterations (0 means no limit)

	Mapping(in).SizeX [1]

	Mapping canvas pattern default width for
input layer in

	Mapping(in).SizeY [1]

	Mapping canvas pattern default height for
input layer in

	Mapping(in).Size [1]

	Mapping canvas pattern default size for
input layer in (mutually exclusive with
Mapping(in).SizeX and Mapping(in).SizeY)

	Mapping(in).StrideX [1]

	Mapping canvas default X-axis step for
input layer in

	Mapping(in).StrideY [1]

	Mapping canvas default Y-axis step for
input layer in

	Mapping(in).Stride [1]

	Mapping canvas default step for input layer in
(mutually exclusive with Mapping(in).StrideX
and Mapping(in).StrideY)

	Mapping(in).OffsetX [0]

	Mapping canvas default X-axis offset for
input layer in

	Mapping(in).OffsetY [0]

	Mapping canvas default Y-axis offset for
input layer in

	Mapping(in).Offset [0]

	Mapping canvas default offset for input
layer in (mutually exclusive with
Mapping(in).OffsetX and
Mapping(in).OffsetY)

	Mapping(in).NbIterations
[0]

	Mapping canvas pattern default number of
iterations for input layer in (0 means no
limit)

 Targets (outputs & losses)

Targets (outputs & losses)

A Target is an output point of the neural network. A Target specifies
how the error must be computed and back-propagated at the output of a layer,
and computes a classification score. A target also specifies how the database
labels must be mapped to the output neurons.

To specify that the back-propagated error must be computed at the output
of a given layer (generally the last layer, or output layer), one must
add a target section named LayerName.Target:

...
[LayerName.Target]
TargetValue=1.0 ; default: 1.0
DefaultValue=0.0 ; default: -1.0

From labels to targets

Usually, there are as many output
neurons as labels and each label is mapped to a different neuron. This is the
default behavior in N2D2: each label in the dataset, by order of appearance
when loading the data and label files (files are always loaded in the
alphabetical order), is mapped to the next available output neuron. If there is
more labels than output neurons, an error is thrown at runtime at the first
occurrence of a new label exceeding the output neurons capacity.

This default behavior can be changed using a label-mapping file, where the label
mapping is explicitly specified, which is useful to map several labels to the
same output neuron for example.

To specify a target in the INI file, one must simply add a LayerName.Target section,
where LayerName is the name of the layer section to which the target must be
associated, as illustrated below:

; Output layer
[seg_output]
Input=...
Type=Conv
KernelWidth=1
KernelHeight=1
NbOutputs=1
Stride=1
ActivationFunction=LogisticWithLoss
WeightsFiller=XavierFiller
ConfigSection=common.config

[seg_output.Target]
LabelsMapping=mapping.dat

The LabelsMapping parameter, when present, is the path to the file
containing the mapping of the dataset labels to the outputs of the layer.
In the present case, there is a single output neuron (per output pixel) in the
seg_output layer, which is a special case where two labels can be mapped
since the activation used is a logistic function. One label can be mapped to
the output value 0 and one label can be mapped to the output value 1.
With more than one output neuron (per output pixel) however, it only makes
sense to map a single label per output.

The label mapping file format is a two-columns, space separated, text table,
with the first column corresponding to the name of the label in the dataset
and the second column to the index of the associated output neuron.

Two special label names exist:

	* corresponding to annotations without valid label (label ID is -1 in N2D2), sometimes referred to as “ignore label” in N2D2;

	default meaning any valid label name that is not explicitly listed in the label mapping file;

The background name is not a reserved label name, it is simply the name
that is used as DefaultLabel in the Database driver.

Here is an example of label mapping file for the single output layer seg_output:

background (no defect)
background 0

padding
* -1

defect
default 1

Wildcards can be used as well in the name of the label:

	* meaning any one or several character(s) starting from this position (non greedy, cannot be used alone as it would refer to the special name for invalid label);

	+ meaning any single character at this position.

The actual label mapping of every labels present in the dataset for a given
output target is generated automatically when running the simulation. It is
strongly advised to check this generated file to make sure that there is no
error in the LabelsMapping file and that the mapping is done as intended.
The file is generated in seg_output.Target/labels_mapping.log.dat.

Pixel-wise segmentation

Pixel-wise segmentation consists of directly learning a label for each output
pixel of the network, typically in a fully convolutional network. Without
upscaling, unpooling or deconvolution, the output size is generally smaller than
the input size, by a factor S, corresponding to the product of the strides of
the successive layers.

In practice, because of the scaling factor S of the network, each output pixel
classify an input macro-pixel of size SxS. It is perfectly possible to get rid
of this scaling factor by rescaling the output to the input size before the
Softmax layer, using bilinear sampling for example. This can be done during
training, in order to precisely back-propagate the pixel-wise annotations, as
the bilinear sampling algorithm is easily differentiable. However, for
inference, the resampling of the output does not add information to the
segmentation (no new information is created when upscaling an image with
context-agnostic algorithms). This is why the scaling factor S may be kept for
inference, without resampling, in order to reduce the computing and
memory cost of processing the outputs.

Other strategies are possible to back-propagate the pixel-wise annotations,
which need to take into account the scaling factor S:

	Take the majority annotation within the macro-pixel SxS: the label attributed to the output pixel is the label which occurs the most often in the SxS macro-pixel;

	Take the majority annotation within the macro-pixel SxS, at the exception of a weak annotation. In this case, any label other than the weak label in the macro-pixel takes precedence over the weak one. In N2D2, this is implemented with the WeakTarget parameter in [*.target] sections:

	WeakTarget=-1 means any target other than “ignore” takes precedence. This is useful if the background is ignored. If there is only a few pixels in the macro-pixel that are not background, they take precedence so that the macro-pixel is not considered as background.

	WeakTarget=-2 means there is no weak label.

Loss functions

The loss function in N2D2 is always implicitly defined.
For the Softmax layer or the Logistic activation, the loss is the cross
entropy loss, when used with the WithLoss=1 parameter. Otherwise, the
default loss is the MSE (L2) loss.

The reason is that the error is defined at the output of a layer with the
Cell_Frame[_CUDA]::setOutputTarget() or Cell_Frame[_CUDA]::setOutputTargets(),
which set the value of the input gradient for the cell to (target - output).
These functions are called in the Target class.

So, if a Target is attached to any cell, the corresponding loss
function would be the MSE loss, as the simple difference above is the derivative.
For the softmax or the logistic, the special parameter WithLoss,
when enabled, will simply by-pass the function derivative and directly set
the output gradient of the function to the difference above. This effectively
results to a cross entropy loss with regards to the input gradient of these
functions, as per the mathematical simplification of the cross entropy loss
derivative multiplied by the functions gradient.

Demonstration

The cross entropy loss for a single image is:

\[L = -\sum_{j=1}^{M}{y_{j}\log(p_{j})}\]

Note

	M - number of classes (dog, cat, fish)

	log - the natural log

	y - binary indicator (0 or 1) if class label \(j\) is the correct classification for this image

	p - predicted probability that the image is of class \(j\)

The softmax performs the following operation:

\[p_{i} = \frac{\exp{x_{i}}}{\sum_{k}\exp{x_{k}}}\]

To perform the back-propagation, we need to compute the derivative of the loss
\(L\) with respect to the inputs \(x_{i}\):

\[\begin{align}\begin{aligned}\frac{\partial L}{\partial x_i}=-\sum_ky_k\frac{\partial \log p_k}{\partial x_i}=-\sum_ky_k\frac{1}{p_k}\frac{\partial p_k}{\partial x_i}\\=-y_i(1-p_i)-\sum_{k\neq i}y_k\frac{1}{p_k}({-p_kp_i})\\=-y_i(1-p_i)+\sum_{k\neq i}y_k({p_i})\\=-y_i+y_ip_i+\sum_{k\neq i}y_k({p_i})\\=p_i\left(\sum_k{y_k}\right)-y_i\\=p_i-y_i\end{aligned}\end{align} \]

given that \(\sum_k{y_k}=1\), as \(y\) is a vector with only one non-zero element, which is 1.

Target types

Target

Base Target class.

Base parameters:

	Parameter

	Default value

	Description

	Type

	TargetScore

	Type of Target

	TargetValue

	1.0

	Target value for the target output neuron(s) (for classification)

	DefaultValue

	0.0

	Default value for the non-target output neuron(s) (for classification)

	TopN

	1

	The top-N estimated targets per output neuron to save

	BinaryThreshold

	0.5

	Threshold for single output (binary classification).

Labels to targets parameters:

	Parameter

	Default value

	Description

	DataAsTarget

	0

	If true (1), the data, and not the labels, is the target (for auto-encoders)

	LabelsMapping

	
	Path to the file containing the labels to target mapping

	CreateMissingLabels

	0

	If true (1), labels present in the labels mapping file but that are non-existent in the
database are created (with 0 associated stimuli)

	WeakTarget

	-2

	When attributing a target to an output macropixel, any target other than
WeakTarget in the macropixel takes precedence over WeakTarget,
regardless of their respective occurrence.

	Value can be -1 (meaning any target other than “ignore” takes precedence).

	Default value is -2 (meaning that there is no weak target, as a target is >= -1).

Masking parameters:

	Parameter

	Default value

	Description

	MaskLabelTarget

	
	Name of the Target to use for MaskedLabel

	MaskedLabel

	-1

	If >= 0, only estimated targets with ID MaskedLabel in the MaskLabelTarget target
are considered in the estimated targets

	MaskedLabelValue

	0

	If true (1), the considered estimated targets values are weighted by the estimated
targets values with ID MaskedLabel in the MaskLabelTarget

Estimated output images parameters:

	Parameter

	Default value

	Description

	NoDisplayLabel

	-1

	If >= 0, the corresponding label ID is ignored in the estimated output image

	LabelsHueOffset

	0

	Hue offset for the first label ID (starting from 0), for the estimated output image

	EstimatedLabelsValueDisplay

	1

	If true (1), the value in the HSV colorspace is equal to the estimated
value. Otherwise, displayed value is 255 regardless of the confidence.

	ValueThreshold

	0.0

	Threshold for estimated value to be considered in the output logs.

	ImageLogFormat

	jpg

	If left empty, use the database image origin format

TargetScore

The default target, which automatically compute the confusion matrix, confusion
metrics and score, for classification or segmentation networks.

Confusion matrix:

[image: Example of confusion matrix generated by a ``TargetScore``.]

Example of confusion matrix generated by a TargetScore.

Confusion metrics:

[image: Example of confusion metrics generated by a ``TargetScore``.]

Example of confusion metrics generated by a TargetScore.

Score:

[image: Example of validation score generated by a ``TargetScore``.]

Example of validation score generated by a TargetScore.

TargetROIs

The TargetROIs allow to perform connected-component labeling (CCL) on
pixel-wise segmentation networks, to retrieve bounding boxes.

This approach is different from classical object detection networks, like SSD or
Yolo, where bounding boxes are directly inferred from anchors.

	Parameter

	Default value

	Description

	MinSize

	0

	Minimum number of macro-pixels above threshold than can constitute a bounding box.
Bounding boxes with fewer than MinSize macro-pixels above threshold are discarded

	MinOverlap

	0.5

	Minimum overlap (IoU) of a bounding box with an annotation to be considered a match

	FilterMinHeight

	0

	Minimum height of the ROI to keep it

	FilterMinWidth

	0

	Minimum width of the ROI to keep it

	FilterMinAspectRatio

	0.0

	Minimum aspect ratio (width/height) of the ROI to keep it (default is 0.0 = no minimum)

	FilterMaxAspectRatio

	0.0

	Maximum aspect ratio (width/height) of the ROI to keep it (default is 0.0 = no minimum)

	MergeMaxHDist

	1

	Maximum horizontal distance for merging (in macro-pixels)

	MergeMaxVDist

	1

	Maximum vertical distance for merging (in macro-pixels)

	ScoreTopN

	1

	TopN number of class scores to keep for the ROI

 Adversarial module

Adversarial module

[image: Adversarial attack on a stop sign.]

This module aims to provide users several tools to simulate
an adversarial attack on a neural network.

Adversarial attacks can threaten the security of users.
They consist in deceiving the network without the user’s knowledge by making imperceptible
changes to the input data.

This module give you the possibility to run an adversarial attack,
study the consequences of differents attacks and implement your own attacks.

Contents

	For the users

	Run an adversarial attack

	1st function to study adversarial attacks

	2nd function to study adversarial attacks

	For the developers

For the users

Run an adversarial attack

In order to perform an adversarial attack simulation, you will need to add in
the Ini file of your network a new section called [sp.Adversarial].
In this section, you can specify the type of attack you wish to run as well as
some parameters to design your attack.

; Environment
[sp]
SizeX=32
SizeY=32
BatchSize=128

[sp.Adversarial]
Attack=PGD
Eps=0.2

The parameters you can modify are indicated in the following table:

	Option [default value]

	Description

	Attack [None]

	Name of the attack (None, Vanilla, GN, FGSM, PGD)

	Eps [0.1]

	Degradation rate

	NbIterations [10]

	Number of iterations (if the attack requires several iterations)

	RandomStart [false]

	If true, randomize every pixel between pixel-Eps and pixel+Eps

	Targeted [false]

	If true, activate targeted mode (label+1 found by the deepNet)

After specifying the design of the attack, you can run the regular N2D2 options like -test or -learn`.
Therefore, you can test your network against adversarial attacks by running the test option.

$./n2d2 ResNet-18-BN.ini -test

Moreover, running a learning with the adversarial module will execute a robust learning.

1st function to study adversarial attacks

This function can allow you to perform an adversarial attack on a single batch.
The function indicates the successful attacks and stores the original and the modified inputs in
the testAdversarial folder.

To perform the function, please run

$./n2d2 ResNet-18-BN.ini -dev 0 -testAdv Solo

You should see on your terminal screen

PGD attack
Untargeted mode
BatchPos 0: Successful attack (label: 7, estimated: 9 with 55.54%)
BatchPos 1: Successful attack (label: 3, estimated: 5 with 43.59%)
BatchPos 2: Successful attack (label: 1, estimated: 7 with 53.33%)
BatchPos 3: Successful attack (label: 8, estimated: 2 with 50.92%)
BatchPos 4: Successful attack (label: 5, estimated: 8 with 51.02%)
BatchPos 5: Successful attack (label: 0, estimated: 6 with 50.26%)
BatchPos 6: Successful attack (label: 8, estimated: 3 with 59.07%)
BatchPos 7: Successful attack (label: 7, estimated: 9 with 52.42%)
BatchPos 8: Successful attack (label: 9, estimated: 7 with 62.47%)
BatchPos 9: Successful attack (label: 5, estimated: 0 with 61.88%)
Time elapsed: 6.85 s

2nd function to study adversarial attacks

This function can allow you to perform an adversarial attack on multiple batches (2000 images).
The function indicates the ratio of successful attacks. It also provides the ratio of successful
attacks for each class.

To perform the function, please run

$./n2d2 ResNet-18-BN.ini -dev 0 -testAdv Multi

You should see on your terminal screen

Treating 2000/2000
Analysis of the results...
Successful attacks: 2.20%
including network errors: 1.35%
- successful attacks on class 0: 0.00% (0/218)
- successful attacks on class 1: 0.00% (0/219)
- successful attacks on class 2: 2.78% (6/216)
- successful attacks on class 3: 2.16% (4/185)
- successful attacks on class 4: 1.60% (3/188)
- successful attacks on class 5: 4.89% (9/184)
- successful attacks on class 6: 2.55% (5/196)
- successful attacks on class 7: 3.37% (7/208)
- successful attacks on class 8: 3.66% (7/191)
- successful attacks on class 9: 1.54% (3/195)
Time elapsed: 4.62 s

For the developers

It’s now your turn to implement your own attacks !

To integrate your attack inside N2D2, you will have to change the following files:

	include/Adversarial.hpp

enum Attack_T {
 None,
 Vanilla,
 GN,
 FGSM,
 PGD,
 My_attack <---------------
};

...

namespace {
template <>
const char* const EnumStrings<N2D2::Adversarial::Attack_T>::data[]
 = {"None", "Vanilla", "GN", "FGSM", "PGD", "My_attack"};
}

...

void FFGSM_attack(std::shared_ptr<DeepNet>& deepNet,
 const float eps,
 const float alpha,
 const bool targeted = false);

void PGD_attack(std::shared_ptr<DeepNet>& deepNet,
 const float eps,
 const unsigned int nbIter,
 const float alpha,
 const bool targeted = false,
 const bool random_start = false);

void My_attack(); <---------------

	src/Adversarial.cpp

in the attackLauncher function, indicate your attack in the switch.

case Vanilla:
 Vanilla_attack();
 break;

case FGSM:
 FGSM_attack(deepNet, mEps, mTargeted);
 break;

case My_attack:
 My_attack(); <---------------
 break;

void N2D2::My_attack()
{
 /* My implementation */
}

	src/Generator/AdversarialGenerator.cpp

If you need to add new parameters, add them in the class Adversarial and don’t
forget to save them during the generation of the Adversarial layer. You can
implement some setter methods in the AdversarialGenerator file.

adv->setEps(iniConfig.getProperty<float>("Eps", adv->getEps()));
adv->setNbIterations(iniConfig.getProperty<unsigned int>("NbIterations", adv->getNbIterations()));
adv->setRandomStart(iniConfig.getProperty<bool>("RandomStart", adv->getRandomStart()));
adv->setTargeted(iniConfig.getProperty<bool>("Targeted", adv->getTargeted()));

return adv;

 Introduction

Introduction

For notation purposes, we will refer to the python library of N2D2 as n2d2.
This library uses the core function of N2D2 and add an extra layer of abstraction to make the experience more user friendly.
With the library you can import data, pre-process them, create a deep neural network model, train it and realize inference with it.
You can also import a network using the ini file configuration or the ONNX library.

Here are the functionalities available with the Python API :

	Feature

	Available

	Python API Only

	Import a network from
an INI file

	✔️

	

	Import a network from
an ONNX file

	✔️

	

	Build a network with
the API

	✔️

	

	Load and apply
transformation to a
dataset

	✔️

	

	Train a network

	✔️

	

	Flexible definition of
the computation graph

	✔️

	✔️

	Test a network with
the N2D2 analysis tools

	✔️

	

	Torch interoperability

	✔️

	✔️

	Keras interoperability

	✔️

	✔️

	Multi GPU support

	✔️

	

	Exporting network

	✔️

	

Installation of the virtual environment

To run the python API, it’s good practice to use python 3.7 or a newer version in a virtual environment.

To set up your environment, please follow these steps:

Create your python virtual environment
virtualenv -p python3.7 env

Activate the virtual environment
source env/bin/activate

Check versions
python --version
pip --version

To leave the virtual environment
deactivate

If everything went well, you should have the version 3.7 of python.

Installation of the Python API

There are multiple methods to install the python API on your device.

Feel free to use the method of your choice.

With the Python Package Index (Py Pi)

Warning

This method is not supported anymore, we are working on it !

You can have access to the last stable version of the python API by using
pip and importing the package n2d2.

pip install n2d2

From the N2D2 Github repository

You can have access to the developer version by importing the API from
the N2D2 Github repository via pip.

pip install git+https://github.com/CEA-LIST/N2D2

If you have already cloned the Github repository

You can still build the python API with a cloned N2D2 repository.
Go at the root of the N2D2 projet and follow the following steps
(don’t forget to activate your virtual environment before).

Build the N2D2 library
python setup.py bdist_wheel

Install the n2d2 python packages in your virtual environment
pip install .

Installation for developer

If you want to install n2d2 as seomeone who wants to contribute to n2d2, we recommand the following setup :

Inside your n2d2 project, create a build folder and compile N2D2 inside it :

mkdir build && cd build
cmake .. && make -j 8

Once this is done, you have generated the shared object : lib/n2d2.*.so.

You can add the generated lib folder and the python source in your PYTHONPATH with the command :

export PYTHONPATH=$PYTHONPATH:<N2D2_BUILD_PATH>/lib:<N2D2_PATH>/python

Note

Add this line in your bashrc to always have a good PYTHONPATH setup !

To check if your PYTHONPATH works properly you can try to import N2D2 (verify that the compilation went well)
and then n2d2 (verify that your PYTHONPATH point the n2d2 python API).

Frequent issues

Module not found N2D2

If when you import n2d2 you get this error :

ModuleNotFoundError: No module named 'N2D2'

This is likely due to your python version not matching with the one used to compile N2D2.

You can find in your site-packages (or in your build/lib if you have compiled N2D2 with CMake) a .so file named like this : N2D2.cpython-37m-x86_64-linux-gnu.so.

This file name indicates the python version used to compile N2D2, in this example 3.7.

You should either make sure to use a virtualenv with the right python version or check the bellow section.

N2D2 doesn’t compile with the right version of Python

When compiling N2D2 you can use an argument to specify the python version you want to compile N2D2 for.

cmake -DPYTHON_EXECUTABLE=<path_to_python_binary> <path_to_n2d2_cmakefile>

Note

On linux you can use $(which python) to use your default python binary.

You can then check the version of python on the shared object in build/lib.

For example, this shared object N2D2.cpython-37m-x86_64-linux-gnu.so have been compiled for python3.7.

Lib not found when compiling

If CMake fails to find lib files when compiling, this may be due to the absence of the dependency python3-dev.

When generating a new virtualenv after installing the dependency, you should see include/python3.7m inside the generated folder.

If not, you may need to reboot in order to update system variables.

Test of the Python API

Whatever the method you chose, it should compile the n2d2 libraries and add them to your virtual environnement.

You can test it by trying to import n2d2 in your python interpreter :

python
>>> import n2d2
>>> print(n2d2.Tensor([2,3]))
n2d2.Tensor([
0 0 0
0 0 0
], device=cpu, datatype=float)
>>> exit()

You can find more examples in the Python API section if you want to test every feature.

It might be possible you could find some issues by using the API.

So please notify us at https://github.com/CEA-LIST/N2D2/issues if you find any problem or any possible improvement.

Default values

The python API used default values that you can modify at any time in your scripts.

List of modifiable parameters

Here we will list parameters which can be directly modified in your script.

	Default parameters

	Description

	default_model

	If you have compiled N2D2 with CUDA, you
can use Frame_CUDA, default= Frame

	default_datatype

	Datatype of the layer of the neural network. Can be double or
float, default= float

Important : This variable doesn’t affect the data type of
n2d2.Tensor objects.

	verbosity

	Level of verbosity, can be
n2d2.global_variables.Verbosity.graph_only,
n2d2.global_variables.Verbosity.short or
n2d2.global_variables.Verbosity.detailed,
default= n2d2.global_variables.Verbosity.detailed

	seed

	Seed used to generate random numbers(0 = time based),
default = 0

	cuda_device

	Device to use for GPU computation with CUDA, you can enable multi
GPU by giving a tuple of device, default = 0

Example

n2d2.global_variables.default_model = "Frame_CUDA"

n2d2.global_variables.default_datatype = "double"

n2d2.global_variables.verbosity = n2d2.global_variables.Verbosity.graph_only

n2d2.global_variables.seed = 1

n2d2.global_variables.cuda_device = 1
Multi GPU example :
n2d2.global_variables.cuda_device = 0, 1

 Databases

Databases

Introduction

The python library integrates pre-defined modules for several well-known database used in the deep learning community, such as MNIST, GTSRB, CIFAR10 and so on.
That way, no extra step is necessary to be able to directly build a network and learn it on these database.
The library allow you to add pre-process data with built in Transformation.

Database

The python library provide you with multiple object to manipulate common database.

Loading hand made database can be done using n2d2.database.DIR.

Like in the following example :

Creating the database object
db = n2d2.database.DIR()

provider = n2d2.provider.DataProvider(db, data_dims)

The zeroes represent the depth to seek the data.
db.load(data_path, 0, label_path, 0)

With this line we put all the data in the learn partition:
db.partition_stimuli(learn=1, validation=0, test=0)
provider.set_partition("Learn")

inputs_tensor = provider.read_random_batch()

DIR

Loading a custom database

Hand made database stored in files directories are directly supported
with the DIR_Database module. For example, suppose your database is
organized as following :

	GST/airplanes: 800 images

	GST/car_side: 123 images

	GST/Faces: 435 images

	GST/Motorbikes: 798 images

You can then instanciate this database as input of your neural network
using the following line:

database = n2d2.database.DIR("./GST", learn=0.4, validation=0.2)

Each subdirectory will be treated as a different label, so there will be
4 different labels, named after the directory name.

The stimuli are equi-partitioned for the learning set and the validation
set, meaning that the same number of stimuli for each category is used.
If the learn fraction is 0.4 and the validation fraction is 0.2, as in
the example above, the partitioning will be the following:

	Label ID

	Label name

	Learn set

	Validation set

	Test set

	[0.5ex] 0

	airplanes

	49

	25

	726

	1

	car_side

	49

	25

	49

	2

	Faces

	49

	25

	361

	3

	Motorbikes

	49

	25

	724

	
	Total:

	196

	100

	1860

Note

If equiv_label_partitioning is 1 (default setting), the number of stimuli
per label that will be partitioned in the learn and validation sets will
correspond to the number of stimuli from the label with the fewest stimuli.

To load and partition more than one DataPath, one can use the
n2d2.database.Database.load() method.

This method will load data in the partition Unpartitionned, you can move the stimuli
in the Learn, Validation or Test partition using the
n2d2.database.Database.partition_stimuli() method.

Handling labelization

By default, your labels will be ordered by alphabetical order.
If you need your label to be in a specific order, you can specify it using
an exterior file we will name it label.dat for this example :

airplanes 0
car_side 1
Motorbikes 3
Faces 2

Then to load the database we will use :

database = n2d2.database.DIR("./GST", learn=0.4, validation=0.2, label_path="./label.dat", label_depth=0)

Warning

It is important to specify label_depth=0 if you are specifying label_path !

Numpy

The n2d2.database.Numpy allows to create a database using Numpy array.
This can be especially usefull if you already have a dataloader written in Python.

Note

The labels are optional, this can be usefull if you have previously trained your model and only need data to calibrate you model using the n2d2.quantizer.PTQ() function.

Usage example

import n2d2
import numpy as np

db = n2d2.database.Numpy()
db.load([
 np.ones([1,2,3]),
 np.zeros([1,2,3]),
 np.ones([1,2,3]),
 np.zeros([1,2,3]),
],
[
 0,
 1,
 0,
 1
])
db.partition_stimuli(1., 0., 0.) # Learn Validation Test

provider = n2d2.provider.DataProvider(db, [3, 2, 1], batch_size=2)
provider.set_partition("Learn")
print("First stimuli :")
print(next(provider))

MNIST

ILSVRC2012

CIFAR10

CIFAR100

Cityscapes

GTSRB

Transformations

Composite

PadCrop

Distortion

Rescale

Reshape

ColorSpace

Flip

RangeAffine

SliceExtraction

RandomResizeCrop

ChannelExtraction

Sending data to the Neural Network

Once a database is loaded, n2d2 use n2d2.provider.DataProvider to provide data to the neural network.

The n2d2.provider.DataProvider will automatically apply the n2d2.transform.Transformation to the dataset.
To add a transformation to the provider, you should use the method n2d2.transform.Transformation.add_transformation().

Example

In this example, we will show you how to create a n2d2.database.Database, n2d2.provider.Provider and apply n2d2.transformation.Transformation to the data.

We will use the n2d2.database.MNIST database driver, rescale the images to a 32x32 pixels size and then print the data used for the learning.

Loading data
database = n2d2.database.MNIST(data_path=path, validation=0.1)

Initializing DataProvider
provider = n2d2.provider.DataProvider(database, [32, 32, 1], batch_size=batch_size)

Applying Transformation
provider.add_transformation(n2d2.transform.Rescale(width=32, height=32))

Setting the partition of data we will use
provider.set_partition("Learn")

Iterating other the inputs
for inputs in provider:
 print(inputs)

 Cells

Cells

Introduction

Cell objects are the atomics elements that compose a deep neural network.

They are the node of the computation graph. n2d2.cells.NeuralNetworkCell are not dependant of a DeepNet this allow a dynamic management of the computation.

	Cells are organize with the following logic :
	
	n2d2.cells.NeuralNetworkCell : Atomic cell of a neural network;

	n2d2.cells.Block : Store a collection of n2d2.cells.NeuralNetworkCell, the storage order does not determine the graph computation;

	n2d2.cells.DeepNetCell : This cell allow you to use an N2D2.DeepNet, it can be used for ONNX and INI import or to run optimize learning;

	n2d2.cells.Iterable : Similar to n2d2.cells.Block but the order of storage determine the computation graph;

	n2d2.cells.Sequence : A vertical structure to create neural network;

	n2d2.cells.Layer : An horizontal structure to create neural network.

[image: Cell class diagram]

Block

Sequence

Layer

DeepNetCell

The n2d2.cells.DeepNetCell constructor require an N2D2.DeepNet. In practice, you will not use the constructor directly.

There are three methods to generate a n2d2.cells.DeepNetCell : n2d2.cells.DeepNetCell.load_from_ONNX(), n2d2.cells.DeepNetCell.load_from_INI(), n2d2.cells.Sequence.to_deepnet_cell()

The DeepNetCell can be used to train the neural network in an efficient way thanks to n2d2.cells.DeepNetCell.fit().

Example

You can create a DeepNet cell with n2d2.cells.DeepNetCell.load_from_ONNX() :

database = n2d2.database.MNIST(data_path=DATA_PATH, validation=0.1)
provider = n2d2.provider.DataProvider(database, [28, 28, 1], batch_size=BATCH_SIZE)
model = n2d2.cells.DeepNetCell.load_from_ONNX(provider, ONNX_PATH)
model.fit(nb_epochs)
model.run_test()

Using n2d2.cells.DeepNetCell.fit() method will reduce the learning time as it will parallelize the loading of the batch of data and the propagation.

If you want to use the dynamic computation graph provided by the API, you can use the n2d2.cells.DeepNetCell as a simple cell.

database = n2d2.database.MNIST(data_path=DATA_PATH, validation=0.1)
provider = n2d2.provider.DataProvider(database, [28, 28, 1], batch_size=BATCH_SIZE)
model = n2d2.cells.DeepNetCell.load_from_ONNX(provider, ONNX_PATH)
sequence = n2d2.cells.Sequence([model, n2d2.cells.Softmax(with_loss=True)])
input_tensor = n2d2.Tensor(DIMS)
output_tensor = sequence(input_tensor)

Cells

NeuralNetworkCell

Conv

Deconv

Fc

Dropout

ElemWise

Padding

Softmax

BatchNorm2d

Pool

Activation

Reshape

Resize

Scaling

Transformation

Transpose

Saving parameters

You can save the parameters (weights, biases …) of your network with the method export_free_parameters.
To load those parameters you can use the method import_free_parameters.

With n2d2 you can choose wether you want to save the parameters of a part of your network or of all your graph.

	Object

	Save parameters

	Load parameters

	n2d2.cells.NeuralNetworkCell

	n2d2.cells.NeuralNetworkCell.export_free_parameters()

	n2d2.cells.NeuralNetworkCell.import_free_parameters()

	n2d2.cells.Block

	n2d2.cells.Block.import_free_parameters()

	n2d2.cells.Block.import_free_parameters()

Configuration section

If you want to add the same parameters to multiple cells, you can use a n2d2.ConfigSection.

n2d2.ConfigSection are used like dictionaries and passes to the constructor of classes like kwargs.

Usage example

conv_config = n2d2.ConfigSection(no_bias=True)
n2d2.cells.Conv(3, 32, [4, 4], **conv_config)

This creates a n2d2.cells.Conv with the parameter no_bias=True.
This functionality allow you to write more concise code, when multiple cells share the same parameters.

Warning

If you want to pass an object as a parameter for multiple n2d2 object. You need to create a wrapping function to create your object.
Example :

def conv_def():
 return n2d2.ConfigSection(weights_solver=n2d2.solver.SGD())
n2d2.cells.Conv(3, 32, [4, 4], **conv_def())

Mapping

You can change the mapping of the input for some cells (see if they have mapping parameter available).

You can create a mapping manually with a n2d2.Tensor object :

mapping=n2d2.Tensor([15, 24], datatype="bool")
mapping.set_values([
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1]])

Or use the Mapping object :

mapping=n2d2.mapping.Mapping(nb_channels_per_group=2).create_mapping(15, 24)

Which create the following mapping :

1 1 0
0 0 1 1 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0
0 1 1
0 1 1

Solver

You can associate at construction and run time a n2d2.solver.Solver object to a cell. This solver object will optimize the parameters of your cell using a specific algorithm.

Usage example

In this short example we will see how to associate a solver to a model and to a cell object at construction and at runtime.

Set solver at construction time

Let’s create a couple of n2d2.cells.Fc cell and add them to a n2d2.cells.Sequence.
At construction time we will set the solver of one of them to a n2d2.solver.SGD with a learning_rate=0.1.

import n2d2

cell1 = n2d2.cells.Fc(2,2, solver=n2d2.solver.SGD(learning_rate=0.1))
cell2 = n2d2.cells.Fc(2,2)

model = n2d2.cells.Sequence([cell1, cell2])

print(model)

Output :

'Sequence_0' Sequence(
 (0): 'Fc_0' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.1, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.1, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
 (1): 'Fc_1' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
)

Set a solver for a specific parameter

We can set a new solver for the bias of the second cell fully connected cell. This solver will be different than the weight parameter one.

Note

Here we access the cell via its instanciate object but we could have used its name : model["Fc_1"].bias_solver=n2d2.solver.Adam().

cell2.bias_solver=n2d2.solver.Adam()

print(model)

Output :

'Sequence_0' Sequence(
 (0): 'Fc_0' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.1, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.1, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
 (1): 'Fc_1' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=Adam(beta1=0.9, beta2=0.999, clamping=, epsilon=1e-08, learning_rate=0.001), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
)

Set a solver for a model

We can set a solver to the whole n2d2.cells.Sequence with the method n2d2.cells.Sequence.set_solver().

model.set_solver(n2d2.solver.Adam(learning_rate=0.1))

print(model)

Output :

'Sequence_0' Sequence(
 (0): 'Fc_0' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=Adam(beta1=0.9, beta2=0.999, clamping=, epsilon=1e-08, learning_rate=0.1), bias_solver=Adam(beta1=0.9, beta2=0.999, clamping=, epsilon=1e-08, learning_rate=0.1), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
 (1): 'Fc_1' Fc(Frame<float>)(nb_inputs=2, nb_outputs=2 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=Adam(beta1=0.9, beta2=0.999, clamping=, epsilon=1e-08, learning_rate=0.1), bias_solver=Adam(beta1=0.9, beta2=0.999, clamping=, epsilon=1e-08, learning_rate=0.1), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
)

SGD

Adam

Filler

You can associate to a cell at construction time a n2d2.filler.Filler object. This object will fill weights and biases using a specific method.

Usage example

In this short example we will see how to associate a filler to a cell object, how to get the weights and biases and how to set a new filler and refill the weights.

Setting a filler at construction time

We begin by importing n2d2 and creating a n2d2.cells.Fc object. We will associate a n2d2.filler.Constant filler.

Note

If you want to set a filler only for weights (or biases) you could have used the parameter weight_filler (or bias_filler).

import n2d2
cell = n2d2.cells.Fc(2,2, filler=n2d2.filler.Constant(value=1.0))

If you print the weights, you will see that they are all set to one.

print("--- Weights ---")
for channel in cell.get_weights():
for value in channel:
 print(value)

Output :

--- Weights ---
n2d2.Tensor([
1
], device=cpu, datatype=f)
n2d2.Tensor([
1
], device=cpu, datatype=f)
n2d2.Tensor([
1
], device=cpu, datatype=f)
n2d2.Tensor([
1
], device=cpu, datatype=f)

Same with the biases

print("--- Biases ---")
for channel in cell.get_biases():
print(channel)

Output :

--- Biases ---
n2d2.Tensor([
1
], device=cpu, datatype=f)
n2d2.Tensor([
1
], device=cpu, datatype=f)

Changing the filler of an instanciated object

You can set a new filler for bias by changing the bias_filler attribute (or weight_filler for only weights or filer for both).

However changing the filler doesn’t change the parameter values, you need to use the method n2d2.cells.Fc.refill_bias() (see also n2d2.cells.Fc.refill_weights())

Note

You can also use the method n2d2.cells.Fc.set_filler(), n2d2.cells.Fc.set_weights_filler() and n2d2.cells.Fc.set_biases_filler(). Which have a refill option.

cell.bias_filler=n2d2.filler.Normal()
cell.refill_bias()

You can then observe the new biases :

print("--- New Biases ---")
for channel in cell.get_biases():
print(channel)

Output :

--- New Biases ---
n2d2.Tensor([
1.32238
], device=cpu, datatype=f)
n2d2.Tensor([
-0.0233932
], device=cpu, datatype=f)

He

Normal

Constant

Xavier

Activations

You can associate to some cell an activation function.

Linear

Rectifier

Tanh

Target

Last cell of the network this object computes the loss.

To understand what the Target does, please refer to this part of the documentation : Target INI.

Usage example

How to use a Target to train your model :

Propagation & BackPropagation example
output = model(stimuli)
loss = target(output)
loss.back_propagate()
loss.update()

Log performance analysis of your training :

After validation
save computational stats of the network
target.log_stats("name")
save a confusion matrix
target.log_confusion_matrix("name")
save a graph of the loss and the validation score as a function of the number of steps
target.log_success("name")

 Tensor

Tensor

Introduction

n2d2.Tensor is a wrapper of the Tensor object available in N2D2 (see Tensor).

The class n2d2.Tensor contains a reference to the element which produce it and can be seen as the edge of the computation graph.

Tensor

Manipulating tensors

For setting and getting value we will be using the following tensor as an example :

tensor = n2d2.Tensor([2, 3])

0 0 0
0 0 0

You can set and get values using :

Coordinates

tensor[1,0] = 1 # Using coordinates
value = tensor[1,0]

If you print the tensor you will see :

0 0 0
1 0 0

Index

You can use an index to get or set elements of a tensor.
The index correspond to the flatten representation of your tensor.

tensor[0] = 2
value = tensor[0]

If you print the tensor you will see :

2 0 0
0 0 0

Slice

Note

Slice are supported only for assignment !

tensor[1:3] = 3

If you print the tensor you will see :

0 3 3
0 0 0

Set values method

If you want to set multiple values easily, you can use the method n2d2.Tensor.set_values()

tensor.set_values([[1,2,3], [4,5,6]])

If you print the tensor you will see :

1 2 3
4 5 6

Numpy

To Numpy

You can create a numpy.array using a n2d2.Tensor with the class method : n2d2.Tensor.to_numpy()

tensor = n2d2.Tensor([2, 3])
np_array = tensor.to_numpy()

This will create the following tensor :

0 0 0
0 0 0

By default the numpy.array doesn’t create a memory copy meaning that if you want to manipulate a n2d2.Tensor you can use the numpy library.

np_array[0] = 1
print(tensor)

1 1 1
0 0 0

Note

If you do not want to create a memory copy, you should set the parameter copy=True.

np_array = tensor.to_numpy(copy=True)

From Numpy

You can create a n2d2.Tensor using a numpy.array with the class method : n2d2.Tensor.from_numpy()

np_array = numpy.array([[1,2,3], [4,5,6]])
tensor = n2d2.Tensor.from_numpy(np_array)

This will create the following tensor :

1 2 3
4 5 6

Note

You cannot create a n2d2.Tensor from a numpy.array without a memory copy because Tensor require a contiguous memory space which is not required for an array.

CUDA Tensor

You can store your tensor with CPU or GPU (using CUDA). By default, n2d2 creates a CPU tensor.

If you want to create a CUDA Tensor you can do so by setting the parameter cuda to True in the constructor

tensor = n2d2.Tensor([2,3], cuda=True)

You can switch from CPU to GPU at anytime :

tensor.cpu() # Converting to a CPU tensor
tensor.cuda() # Converting to a CUDA tensor

When working on a CUDA tensor you have to understand that they are stored in two different places.

The host and the device. The device is the GPU. The host correspond to your interface with the tensor that exists in the GPU.
You cannot access the device directly, the GPU don’t have input/output functions.

This is why you have two methods to synchronized these two versions (n2d2.Tensor.htod() and n2d2.Tensor.dtoh()).

Synchronizing the device and the host can be an important overhead, it is recommended to compute everything on the device and to synchronize the host at the end.

Synchronization example

Let’s consider the following CUDA Tensor :

t = n2d2.Tensor([2, 2], cuda=True)

0 0
0 0

We set the following values :

t.set_values([[1, 2], [3, 4]])

1 2
3 4

Then we will synchronized the device with the host. this mean that we send the values to the GPU.

t.htod()

1 2
3 4

As you can see, nothing change when printing the tensor.
We have updated the GPU with the new values.
Now let’s change the values stored in the tensor :

t.set_values([[2, 3], [4, 5]])

2 3
4 5

When printing the tensor we see the new values we just set.
Now let’s synchronize the host with the device !

t.dtoh()

1 2
3 4

As you can see when printing the tensor, we now have the old values of the tensor.

 Interoperability

Interoperability

In this section, we will present how you can use n2d2 with other python framework.

Keras [experimental feature]

Presentation

The Keras interoperability allow you to train a model using the N2D2 backend with the TensorFlow/Keras frontend.

The interoperability consist of a wrapper around the N2D2 Network.

In order to integrate N2D2 into the Keras environment, we run TensorFlow in eager mode.

Documentation

Changing the optimizer

Warning

Due to the implementation, n2d2 parameters are not visible to Keras and thus cannot be optimized by a Keras optimizer.

When compiling the keras_to_n2d2.CustomSequential, you can pass an n2d2.solver.Solver object to the parameter optimizer.
This will change the method used to optimize the parameters.

model.summary() # Use the default SGD solver.
model.compile(loss="categorical_crossentropy", optimizer=n2d2.solver.Adam(), metrics=["accuracy"])
model.summary() # Use the newly defined Adam solver.

Example

See the keras example section.

PyTorch [experimental feature]

Presentation

The PyTorch interoperability allow you to run an n2d2 model by using the Torch functions.

The interoperability consist of a wrapper around the N2D2 Network.
We created an autograd function which on Forward call the n2d2 Propagate method and on Backward call the n2d2 Back Propagate and Update methods.

[image: schematic of the interoperability]

Warning

Due to the implementation n2d2 parameters are not visible to Torch and thus cannot be trained with a torch Optimizer.

Tensor conversion

In order to achieve this interoperability, we need to convert Tensor from Torch to n2d2 and vice versa.

n2d2.Tensor require a contiguous memory space which is not the case for Torch. Thus the conversion Torch to n2d2 require a memory copy.
The opposite conversion is done with no memory copy.

If you work with CUDA tensor, the conversion Torch to n2d2 is also done with no copy on the GPU (a copy on the host is however required).

Documentation

Example

See the torch example section.

 Export

Export

In this section, we will present how to generate an N2D2 export with the Python API.
Exports are standalone code which are generated by N2D2.

If you want more specific information about an export please refer to it in the export section.

With the Python API, you can only export an n2d2.cells.DeepNetCell.

Once you have trained your model, you can convert your n2d2.cells.Sequence into a n2d2.cells.DeepNetCell
with the method n2d2.cells.Sequence.to_deepnet_cell().

If you have used another way to train your model such as the interoperability with Keras or PyTorch, you can retrieve the n2d2.cells.DeepNetCell with the appropriate get_deepnet_cell method.

Warning

When using interoperability, you do not associate a n2d2.provider.DataProvider to the n2d2.cells.DeepNetCell.
So if you want to calibrate your network, you need ot specify a data provider otherwise N2D2 will fail to generate the export.

Listing available cells for an export

If you want to get the list available cells for an export you can use the function n2d2.export.list_exportable_cell().

Export C

Exportable cells

Documentation

Example

n2d2.export.export_c(
 DEEPNET_CELL,
 nb_bits=8,
 export_nb_stimuli_max=-1,
 calibration=-1)

Frequently asked question

Scaling and ElemWise are the only layers supported in Fixed-point scaling mode

If you try to export an untrained model to C in int8, you may come across this error :

RuntimeError: Scaling and ElemWise are the only layers supported in Fixed-point scaling mode.

This is due to the weights parameter being initialized with high value.
If you look at the log you may see warning lines like this :

Scaling (8.78614) > 1 for layer "model/dense/MatMul:0" is not supported with Single/Double-shift scaling. Falling back to Fixed-point scaling for this layer.

Training the model before exporting it will probably solve this issue.

Export CPP

Exportable cells

Documentation

Example

n2d2.export.export_cpp(
 DEEPNET_CELL,
 nb_bits=8,
 export_nb_stimuli_max=-1,
 calibration=-1)

Export CPP TensorRT

Exportable cells

Documentation

Example

n2d2.export.export_tensor_rt(DEEPNET_CELL)

 Example

Example

You will find here a list of examples on how to use the Python API.

If you find an example not up to date, please consider leaving an issue here : https://github.com/CEA-LIST/N2D2/issues.

	Data augmentation

	Performance analysis

	Load from ONNX

	Graph manipulation

	Load Numpy Data

	Torch interoperability

	Keras interoperability

 Data augmentation

Data augmentation

In this example, we will see how to use n2d2.provider.DataProvider and n2d2.transform.Transformation to load data and do some data augmentation.

You can find the full python script here data_augmentation.py.

Preliminary

For this tutorial, we will use n2d2 for data augmentation, and numpy and matplotlib for the visualization.

We will create a method plot_tensor to save the generated images from an n2d2.Tensor

import n2d2
import matplotlib.pyplot as plt

def plot_tensor(tensor, path):
 plt.imshow(tensor[0,0,:], cmap='gray', vmin=0, vmax=255)
 plt.savefig(path)

Loading data

We will begin by creating a n2d2.database.MNIST driver to load the MNIST dataset.
We will then create a provider to get the images, we use a batch size of 1 to get only one image.

database = n2d2.database.MNIST(data_path="/local/DATABASE/mnist", validation=0.1)
provider = n2d2.provider.DataProvider(database, [28, 28, 1], batch_size=1)

You can get the number of data per partition by using the method n2d2.database.Database.get_partition_summary() which will print the paritionement of data.

database.get_partition_summary()

Output :

Number of stimuli : 70000
Learn : 54000 stimuli (77.14%)
Test : 10000 stimuli (14.29%)
Validation : 6000 stimuli (8.57%)
Unpartitioned : 0 stimuli (0.0%)

To select which partition you want to read from you need to use the method n2d2.provider.DataProvider.set_partition()

To read data from a n2d2.provider.DataProvider you can use multiple methods.

You can use the methods n2d2.provider.DataProvider.read_batch() or n2d2.provider.DataProvider.read_random_batch().

Note

Since n2d2.provider.DataProvider is an iterable, so you can use the next() function or a for loop !

for loop example
for data in provider:
 pass
next example
data = next(provider)

For this tutorial we will use n2d2.provider.DataProvider.read_batch() !

With this code we will get the first image and plot it :

image = provider.read_batch(idx=0).to_numpy() * 255
plot_tensor(image, "first_stimuli.png")

[image: First stimuli of the MNIST dataset.]

Data augmentation

To do data augmentation with N2D2 we use n2d2.transform.Transformation.
You can add transformation to provider with the method n2d2.provider.DataProvider.add_on_the_fly_transformation() and n2d2.provider.DataProvider.add_transformation().

Warning

Since we already loaded the first image the method n2d2.provider.DataProvider.add_transformation() would not apply the transformation to the image.

By using the transformation n2d2.transform.Flip we will flip vertically our image.

provider.add_on_the_fly_transformation(n2d2.transform.Flip(vertical_flip=True))

image = provider.read_batch(idx=0).to_numpy() * 255
plot_tensor(image, "first_stimuli_fliped.png")

[image: First stimuli of the MNIST dataset but flipped.]

We will negate the first transformation with another n2d2.transform.Flip which we will add with the method n2d2.provider.DataProvider.add_transformation().

negating the first transformation with another one
provider.add_transformation(n2d2.transform.Flip(vertical_flip=True))
image = provider.read_batch(idx=1).to_numpy() * 255
plot_tensor(image, "second_stimuli.png")

[image: Second stimuli of the MNIST dataset.]

Getting labels

To get the labels

print("Second stimuli label : ", provider.get_labels()[0])

Output :

Second stimuli label : 5

 Performance analysis

Performance analysis

In this example we will create a simple neural network model, train it and use analysis tools to see the performances.
You can see the full script of this example here : performance_analysis.py.

Use-case presentation

We propose to recognize traffic signs, for an advanced driver-assistance systems (ADAS).
The traffic signs are already segmented and extracted from images, taken from a front-view camera embedded in a car.

[image: Example of data featured in GTSRB.]

To build our classifier, we will use the German Traffic Sign Benchmark (GTSRB) (https://benchmark.ini.rub.de/) a multi-class, single-image classification challenge held at the International Joint Conference on Neural Networks (IJCNN) 2011.

This benchmark has the following properties:

	Single-image, multi-class classification problem;

	More than 40 classes;

	More than 50,000 images in total;

	Large, lifelike database.

Creation of the network

Defining the inputs of the Neural Network

First of all, if you have CUDA available, you can enable it with the following line :

n2d2.global_variables.default_model = "Frame_CUDA"

The default model is Frame.

Once this is done, you can load the database by using the appropriate driver n2d2.database.GTSRB.
We set 20% of the data to be used for validation.
To feed data to the network, you need to create a n2d2.provider.DataProvider this class will define the input fo neural network.

db = n2d2.database.GTSRB(0.2)
db.load(data_path) # Enter the path of your database !
provider = n2d2.provider.DataProvider(db, [29, 29, 1], batch_size=BATCH_SIZE)

You can apply pre-processing to the data with n2d2.transform.Transformation objects.
We have set the size of the input images to be 29x29 pixels with 1 channel when declaring the n2d2.provider.DataProvider.
But the dataset is composed of image of size comprised from 15x15 to 250x250 pixels with 3 channel (R,G,B).
We will add a n2d2.transform.Rescale to rescale the size of the image to be 29x29 pixels.
The other transformation n2d2.transform.ChannelExtraction will set the number of channel to 1 by creating images in nuance of grey.

provider.add_transformation(n2d2.transform.ChannelExtraction('Gray'))
provider.add_transformation(n2d2.transform.Rescale(width=29, height=29))

Defining the neural network

Now that we have defined the inputs, we can declare the neural network.
We will create a network inspired from the well-known LeNet network.

Before we define the network, we will create default configuration for the different type of layer with n2d2.ConfigSection.
This will allow us to create cells more concisely. n2d2.ConfigSection are used like python dictionary.

solver_config = ConfigSection(
 learning_rate=0.01,
 momentum=0.9,
 decay=0.0005,
 learning_rate_decay=0.993)

fc_config = ConfigSection(weights_filler=Xavier(),
 no_bias=True,
 weights_solver=SGD(**solver_config))
conv_config = ConfigSection(activation=Rectifier(),
 weights_filler=Xavier(),
 weights_solver=SGD(**solver_config),
 no_bias=True)

For the ReLU activation function to be effective, the weights must be initialized carefully, in order to avoid dead units that would be stuck in the]−∞,0] output range before the ReLU function. In N2D2, one can use a custom WeightsFiller for the weights initialization.
This is why we will use the n2d2.filler.Xavier algorithm to fill the weights of the different cells.

To define the network, we will use n2d2.cells.Sequence that take a list of n2d2.nn.NeuralNetworkCell.

model = n2d2.cells.Sequence([
 Conv(1, 32, [4, 4], **conv_config),
 Pool2d([2, 2], stride_dims=[2, 2], Pooling='Max'),
 Conv(32, 48, [5, 5], mapping=conv2_mapping, **conv_config),
 Pool2d([3, 3], stride_dims=[3, 3], Pooling='Max'),
 Fc(48*3*3, 200, activation=Rectifier(), **fc_config),
 Dropout(),
 Fc(200, 43, activation=Linear(), **fc_config),
 Softmax(with_loss=True)
])

Note that in LeNet, the conv2 layer is not fully connected to the Pooling layer.
In n2d2, a custom mapping can be defined for each input connection.
We can do this with the mapping argument by passing a n2d2.Tensor.
The connection of n-th output map to the inputs is defined by the n-th column of the matrix below, where the rows correspond to the inputs.

conv2_mapping=n2d2.Tensor([32, 48], datatype="bool")
conv2_mapping.set_values([
[1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]])

After creating our network, we will create a n2d2.target.Target. This object will compute gradient and log training information that we will display later.

target = n2d2.target.Score(provider)

The n2d2.application.CrossEntropyClassifier deals with the output of the neural network, it computes the loss and propagates the gradient through the network.

Training the neural network

Once the neural network is defined, you can train it with the following loop :

for epoch in range(NB_EPOCH):
 print("\n\nEpoch : ", epoch)
 print("### Learning ###")
 provider.set_partition("Learn")
 model.learn()
 provider.set_reading_randomly(True)
 for stimuli in provider:
 output = model(stimuli)
 loss = target(output)
 loss.back_propagate()
 loss.update()
 print("Batch number : " + str(provider.batch_number()) + ", loss: " + "{0:.3f}".format(loss[0]), end='\r')
 print("\n### Validation ###")
 target.clear_success()
 provider.set_partition('Validation')
 model.test()
 for stimuli in provider:
 x = model(stimuli)
 x = target(x)
 print("Batch number : " + str(provider.batch_number()) + ", val success: "
 + "{0:.2f}".format(100 * target.get_average_success()) + "%", end='\r')

Once the learning phase is ended, you can test your network with the following loop :

print("\n### Testing ###")
provider.set_partition('Test')
model.test()
for stimuli in provider:
 x = model(stimuli)
 x = target(x)
 print("Batch number : " + str(provider.batch_number()) + ", test success: "
 + "{0:.2f}".format(100 * target.get_average_success()) + "%", end='\r')
print("\n")

Performance analysis tools

Once the training is done, you can log various statistics to analyze the performance of your network.

If you have done the testing loop you can use the following line to see the results :

save a confusion matrix
target.log_confusion_matrix("vis_GTSRB")
save a graph of the loss and the validation score as a function of the number of steps
target.log_success("vis_GTSRB")

These methods will create images in a folder with the name of your Target.
In this folder, you will find the confusion matrix :

[image: Confusion Matrix.]

And the training curve :

[image: Success learning.]

If you want to visualize the performance analysis of your neural network you can use the following line :

save computational stats on the network
target.log_stats("vis_GTSRB")

This will generate the following statistics :

	Number of Multiply-ACcumulate (MAC) operations per layers;

	Number of parameters per layers;

	Memory footprint per layers.

These data are available with a logarithm scale or a relative one.

[image: Percentage of the number of operations per layer.]

[image: Percentage of memory usage for each layer.]

[image: Percentage of number of parameter per layer.]

 Load from ONNX

Load from ONNX

In this example, we will see step by step how to load a model from ONNX.

You can find the full python script here lenet_onnx.py with the associated onnx file here LeNet.onnx.

[image: LeNet_onnx_full.]

Loading an ONNX

Before loading the ONNX file, we need to create an n2d2.database.MNIST and n2d2.provider.DataProvider objects.

Change default model to run with CUDA
n2d2.global_variables.default_model = "Frame_CUDA"
Change cuda device (default 0)
n2d2.global_variables.cuda_device = args.device
nb_epochs = args.epochs
batch_size = 54

print("\n### Create database ###")
database = n2d2.database.MNIST(data_path=args.data_path, validation=0.1)

print("\n### Create Provider ###")
provider = n2d2.provider.DataProvider(database, [28, 28, 1], batch_size=batch_size)
provider.add_transformation(n2d2.transform.Rescale(width=28, height=28))
print(provider)

Once this is done, you can load your ONNX file with one line :

print("\n### Loading Model ###")
model = n2d2.cells.DeepNetCell.load_from_ONNX(provider, args.onnx)
print(model)

You should observe a verbose output of the loaded ONNX model :

'DeepNetCell_0' DeepNetCell(
 (0): '9' Conv(Frame_CUDA<float>)(nb_inputs=1, nb_outputs=4, kernel_dims=[3, 3], sub_sample_dims=[1, 1], stride_dims=[1, 1], padding_dims=[0, 0], dilation_dims=[1, 1] | back_propagate=True, no_bias=False, outputs_remap=, weights_export_flip=False, weights_export_format=OCHW, activation=Rectifier(clipping=0.0, leak_slope=0.0, quantizer=None), weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
 (1): '11' Conv(Frame_CUDA<float>)(nb_inputs=4, nb_outputs=4, kernel_dims=[3, 3], sub_sample_dims=[1, 1], stride_dims=[1, 1], padding_dims=[0, 0], dilation_dims=[1, 1] | back_propagate=True, no_bias=False, outputs_remap=, weights_export_flip=False, weights_export_format=OCHW, activation=Rectifier(clipping=0.0, leak_slope=0.0, quantizer=None), weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)(['9'])
 (2): '13' Pool(Frame_CUDA<float>)(pool_dims=[2, 2], stride_dims=[2, 2], padding_dims=[0, 0], pooling=Pooling.Max | activation=None)(['11'])
 (3): '15' Fc(Frame_CUDA<float>)(nb_inputs=576, nb_outputs=128 | back_propagate=True, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=Rectifier(clipping=0.0, leak_slope=0.0, quantizer=None), weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)(['13'])
 (4): '17' Fc(Frame_CUDA<float>)(nb_inputs=128, nb_outputs=10 | back_propagate=True, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=Linear(clipping=0.0, quantizer=None), weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)(['15'])
 (5): '18' Softmax(Frame_CUDA<float>)(with_loss=True, group_size=0 | activation=None)(['17'])
)

The model has been exported successfully !

Training and exporting the model

You can now do what you want with your imported model, like training it :

model.fit(learn_epoch=nb_epochs, valid_metric='Accuracy')
model.run_test()

And even exporting it to CPP in int 8 !

Warning

Don’t forget to remove the softmax layer first because N2D2 does not export this layer for the CPP export.

model.remove("18") # removing Softmax layer before export !
n2d2.export_cpp(model, nb_bits=8, calibration=1)

 Graph manipulation

Graph manipulation

In this example we will see :

	How the N2D2 graph is generated;

	How to draw the graph;

	How to concatenate two Sequences;

	How to get the output of a specific cell;

	How to save only a certain part of the graph.

You can see the full script of this example here : graph_example.py.

For the following examples we will use the following objects :

fc1 = n2d2.cells.Fc(28*28, 50, activation=n2d2.activation.Rectifier())
fc2 = n2d2.cells.Fc(50, 10)

Printing n2d2 graph

The python API possess different vebosity level (default=`detailed`).

Short representation: only with compulsory constructor arguments

n2d2.global_variables.verbosity = n2d2.global_variables.Verbosity.short
print(fc1)
print(fc2)

Output :

'Fc_0' Fc(Frame<float>)(nb_inputs=784, nb_outputs=50)
'Fc_1' Fc(Frame<float>)(nb_inputs=50, nb_outputs=10)

Verbose representation: show graph and every arguments

n2d2.global_variables.verbosity = n2d2.global_variables.Verbosity.detailed
print(fc1)
print(fc2)

Output :

'Fc_0' Fc(Frame<float>)(nb_inputs=784, nb_outputs=50 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=Rectifier(clipping=0.0, leak_slope=0.0, quantizer=None), weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)
'Fc_1' Fc(Frame<float>)(nb_inputs=50, nb_outputs=10 | back_propagate=True, drop_connect=1.0, no_bias=False, normalize=False, outputs_remap=, weights_export_format=OC, activation=None, weights_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), bias_solver=SGD(clamping=, decay=0.0, iteration_size=1, learning_rate=0.01, learning_rate_decay=0.1, learning_rate_policy=None, learning_rate_step_size=1, max_iterations=0, min_decay=0.0, momentum=0.0, polyak_momentum=True, power=0.0, warm_up_duration=0, warm_up_lr_frac=0.25), weights_filler=Normal(mean=0.0, std_dev=0.05), bias_filler=Normal(mean=0.0, std_dev=0.05), quantizer=None)

Graph representation: show the object and the cell associated.

Note

Before propagation, no inputs are visible.

n2d2.global_variables.verbosity = n2d2.global_variables.Verbosity.graph_only
print(fc1)
print(fc2)

Output :

'Fc_0' Fc(Frame<float>)
'Fc_1' Fc(Frame<float>)

Now if we propagate a tensor to our cells, we will generate the computation graph and we will be able to see the linked cells :

x = n2d2.tensor.Tensor(dims=[1, 28, 28], value=0.5)

x = fc1(x)
x = fc2(x)
print(fc1)
print(fc2)

Output :

'Fc_0' Fc(Frame<float>)(['TensorPlaceholder_0'])
'Fc_1' Fc(Frame<float>)(['Fc_0'])

Now we can see the inputs object of each cells !

You can also plot the graph associated to a tensor with the method n2d2.Tensor.draw_associated_graph() :

x.draw_associated_graph("example_graph")

This will generate the following figure :

[image: Example graph.]

Manipulating Sequences

For this example we will show how you can use n2d2 to encapsulate Sequence.

We will create a LeNet and separate it two parts the extractor and the classifier.

from n2d2.cells import Sequence, Conv, Pool2d, Dropout, Fc
from n2d2.activation import Rectifier, Linear

extractor = Sequence([
 Conv(1, 6, kernel_dims=[5, 5]),
 Pool2d(pool_dims=[2, 2], stride_dims=[2, 2], pooling='Max'),
 Conv(6, 16, kernel_dims=[5, 5]),
 Pool2d(pool_dims=[2, 2], stride_dims=[2, 2], pooling='Max'),
 Conv(16, 120, kernel_dims=[5, 5]),
], name="extractor")

classifier = Sequence([
 Fc(120, 84, activation=Rectifier()),
 Dropout(dropout=0.5),
 Fc(84, 10, activation=Linear(), name="last_fully"),
], name="classifier")

We can concatenate these two sequences into one :

network = Sequence([extractor, classifier])

x = n2d2.Tensor([1,1,32,32], value=0.5)
output = network(x)

print(network)

Output

'Sequence_0' Sequence(
 (0): 'extractor' Sequence(
 (0): 'Conv_0' Conv(Frame<float>)(['TensorPlaceholder_1'])
 (1): 'Pool2d_0' Pool2d(Frame<float>)(['Conv_0'])
 (2): 'Conv_1' Conv(Frame<float>)(['Pool2d_0'])
 (3): 'Pool2d_1' Pool2d(Frame<float>)(['Conv_1'])
 (4): 'Conv_2' Conv(Frame<float>)(['Pool2d_1'])
)
 (1): 'classifier' Sequence(
 (0): 'Fc_2' Fc(Frame<float>)(['Conv_2'])
 (1): 'Dropout_0' Dropout(Frame<float>)(['Fc_2'])
 (2): 'last_fully' Fc(Frame<float>)(['Dropout_0'])
)
)

We can also plot the graph :

output.draw_associated_graph("full_lenet_graph")

[image: Example LeNet graph.]

We can also easily access the cells inside the encapsulated Sequence

first_fully = network["last_fully"]
print("Accessing the first fully connected layer which is encapsulated in a Sequence")
print(first_fully)

Output

'last_fully' Fc(Frame<float>)(['Dropout_0'])

This allow us for example to get the output of any cells after the propagation :

print(f"Output of the second fully connected : {first_fully.get_outputs()}")

Output

Output of the second fully connected : n2d2.Tensor([
[0][0]:
0.0135485
[1]:
0.0359611
[2]:
-0.0285292
[3]:
-0.0732218
[4]:
0.0318365
[5]:
-0.0930403
[6]:
0.0467896
[7]:
-0.108823
[8]:
0.0305202
[9]:
0.0055611
], device=cpu, datatype=f, cell='last_fully')

Concatenating n2d2.cells.Sequence can be useful if we want for example to only save the parameters of a part of the network.

network[0].export_free_parameters("ConvNet_parameters")

Output

Export to ConvNet_parameters/Conv_0.syntxt
Export to ConvNet_parameters/Conv_0_quant.syntxt
Export to ConvNet_parameters/Pool2d_0.syntxt
Export to ConvNet_parameters/Pool2d_0_quant.syntxt
Export to ConvNet_parameters/Conv_1.syntxt
Export to ConvNet_parameters/Conv_1_quant.syntxt
Export to ConvNet_parameters/Pool2d_1.syntxt
Export to ConvNet_parameters/Pool2d_1_quant.syntxt
Export to ConvNet_parameters/Conv_2.syntxt
Export to ConvNet_parameters/Conv_2_quant.syntxt

 Load Numpy Data

Load Numpy Data

In this example, we will see how to load data from a Numpy array using n2d2.database.numpy.

You can find the full python script here load_numpy_data.py.

Preliminary

For this tutorial, we will create a database using the following keras data loader : https://keras.io/api/datasets/fashion_mnist/.

Available by importing :

from tensorflow.keras.datasets.fashion_mnist import load_data

(x_train, y_train), (x_test, y_test) = load_data()

Load data into N2D2

Now that we have our data in the form of Numpy array we can create and populate the n2d2.database.numpy.

import n2d2

Instanciate Numpy database object
db = n2d2.database.Numpy()
Load train set
db.load([a for a in x_train], [(int)(i.item()) for i in y_train])
Add the loaded data to the Learn partition
db.partition_stimuli(1., 0., 0.) # Learn Validation Test

Load test set in the validation partition
db.load([a for a in x_test], [(int)(i.item()) for i in y_test], partition="Validation")

Print a summary
db.get_partition_summary()

Number of stimuli : 70000
Learn : 60000 stimuli (85.71%)
Test : 0 stimuli (0.0%)
Validation : 10000 stimuli (14.29%)
Unpartitioned : 0 stimuli (0.0%)

Training a model using the numpy database

Before anything, we will import the following modules :

import n2d2
from n2d2.cells.nn import Fc, Softmax
from n2d2.cells import Sequence
from n2d2.solver import SGD
from n2d2.activation import Rectifier, Linear
from math import ceil

For this example we will create a very simple model :

model = Sequence([
 Fc(28*28, 128, activation=Rectifier()),
 Fc(128, 10, activation=Linear()),
])
softmax = Softmax(with_loss=True)
model.set_solver(SGD(learning_rate=0.001))

print("Model :")
print(model)

In order to provide data to the model for the training, we will create a n2d2.provider.DataProvider.

provider = n2d2.provider.DataProvider(db, [28, 28, 1], batch_size=BATCH_SIZE)

provider.set_partition("Learn")

target = n2d2.target.Score(provider)

Then we can write a classic training loop to learn using the n2d2.provider.DataProvider :

print("\n### Training ###")
for epoch in range(EPOCH):

 provider.set_partition("Learn")
 model.learn()

 print("\n# Train Epoch: " + str(epoch) + " #")

 for i in range(ceil(db.get_nb_stimuli('Learn')/BATCH_SIZE)):

 x = provider.read_random_batch()
 x = model(x)
 x = softmax(x)
 x = target(x)
 x.back_propagate()
 x.update()

 print("Example: " + str(i * BATCH_SIZE) + ", loss: "
 + "{0:.3f}".format(target.loss()), end='\r')

 print("\n### Validation ###")

 target.clear_success()

 provider.set_partition('Validation')
 model.test()

 for i in range(ceil(db.get_nb_stimuli('Validation')/BATCH_SIZE)):
 batch_idx = i * BATCH_SIZE

 x = provider.read_batch(batch_idx)
 x = model(x)
 x = softmax(x)
 x = target(x)

 print("Validate example: " + str(i * BATCH_SIZE) + ", val success: "
 + "{0:.2f}".format(100 * target.get_average_success()) + "%", end='\r')
print("\nEND")

 Torch interoperability

Torch interoperability

In this example, we will follow the Torch tutorial : https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.
And run the network with N2D2 instead of Torch.

You can find the full python script here torch_example.py.

Example

Firstly, we import the same libraries as in the tutorial plus our pytorch_to_n2d2 and n2d2 libraries.

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import n2d2
import pytorch_to_n2d2

We then still follow the tutorial and add the code to load the data and we define the Network.

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

batch_size = 4

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
 shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
 shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

functions to show an image

def imshow(img, img_path):
 img = img / 2 + 0.5 # unnormalize
 cpu_img = img.cpu()
 npimg = cpu_img.numpy()
 plt.imshow(np.transpose(npimg, (1, 2, 0)))
 plt.savefig(img_path)

class Net(nn.Module):
def __init__(self):
 super().__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

def forward(self, x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = torch.flatten(x, 1) # flatten all dimensions except batch
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Here we begin to add our code, we intialize the Torch Network and we pass it to the pytorch_to_n2d2.wrap() method.
This will give us a torch.nn.Module which run N2D2 and that we will use instead of the Torch Network.

torch_net = Net()
specify that we want to use CUDA.
n2d2.global_variables.default_model = "Frame_CUDA"
creating a model which run with N2D2 backend.
net = pytorch_to_n2d2.wrap(torch_net, (batch_size, 3, 32, 32))

criterion = nn.CrossEntropyLoss()
Reminder : We define an optimizer, but it will not be used to optimized N2D2 parameters.
If you want to change the optimizer of N2D2 refer to the N2D2 solver.
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

And that is it ! From this point, we can follow again the tutorial provided by PyTorch and we have a script ready to run.
You can compare the N2D2 and the torch version by commenting the code we added and renaming torch_net into net.

for epoch in range(2): # loop over the dataset multiple times
e_t = time()
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
 # get the inputs; data is a list of [inputs, labels]
 inputs, labels = data[0].to(device), data[1].to(device)

 # zero the parameter gradients
 optimizer.zero_grad()

 # forward + backward + optimize
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 # print statistics
 running_loss += loss.item()
 if i % 2000 == 1999: # print every 2000 mini-batches
 print('[%d, %5d] loss: %.3f' %
 (epoch + 1, i + 1, running_loss / 2000))
 running_loss = 0.0
print(f"Expoch {epoch} : {time()-e_t}")
print('Finished Training')

dataiter = iter(testloader)
images, labels = dataiter.next()
images = images.to(device)
labels = labels.to(device)
print images
imshow(torchvision.utils.make_grid(images), "torch_inference.png")
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(images)

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
 for j in range(4)))

 Keras interoperability

Keras interoperability

For this example, we will use an example provided in the Keras documentation : https://keras.io/examples/vision/mnist_convnet/

You can find the full python script here keras_example.py.

Example

We begin by importing the same library as in the example plus our interoperability library.

import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
Importing the interoperability library
import keras_to_n2d2

We then import the data by following the tutorial.

training parameters
batch_size = 128
epochs = 10
Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255

Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

When declaring the model, we will use the keras_to_n2d2.wrap() function to generate an keras_to_n2d2.CustomSequential which embedded N2D2.

tf_model = keras.Sequential([
 keras.Input(shape=input_shape),
 layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
 layers.MaxPooling2D(pool_size=(2, 2)),
 layers.Flatten(),
 layers.Dense(num_classes, activation="softmax"),
])
model = keras_to_n2d2.wrap(tf_model, batch_size=batch_size, for_export=True)

Once this is done, we can follow again the tutorial and run the training and the evaluation.

model.compile(loss="categorical_crossentropy", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])

And that is it ! You have successfully trained your model with N2D2 using the keras interface.

You can then retrieve the N2D2 model by using the method keras_to_n2d2.CustomSequential.get_deepnet_cell() if you want to perform operation on it.

n2d2_model = model.get_deepnet_cell()

 Core N2D2

Core N2D2

Introduction

In this section we will present the C++ core function that are binded to Python with the framework pybind.
The binding of the C++ core is straightforward, thus this section can also be seen as a documentation of the C++ core implementation of N2D2.

If you want to use the raw python binding, you need to compile N2D2. This will create a ‘.so’ file in the lib folder.
If you want to use the raw binding, you will need to have this file at the root of your project or in your PYTHONPATH.

You can then access the raw binding by importing N2D2 in your python script with the line import N2D2.
It is however not recommended to use the raw binding, you should instead use the n2d2 python library.

DeepNet

Introduction

In order to create a neural network in N2D2 using an INI file, you can use the
DeepNetGenerator:

net = N2D2.Network(seed-1)
deepNet = N2D2.DeepNetGenerator.generate(net, "../models/mnist24_16c4s2_24c5s2_150_10.ini")

Before executing the model, the network must first be initialized:

deepNet.initialize()

In order to test the first batch sample from the dataset, we retrieve the
StimuliProvider and read the first batch from the test set:

sp = deepNet.getStimuliProvider()
sp.readBatch(N2D2.Database.Test, 0)

We can now run the network on this data:

deepNet.test(N2D2.Database.Test, [])

Finally, in order to retrieve the estimated outputs, one has to retrieve the
first and unique target of the model and get the estimated labels and values:

target = deepNet.getTargets()[0]
labels = numpy.array(target.getEstimatedLabels()).flatten()
values = numpy.array(target.getEstimatedLabelsValue()).flatten()
results = list(zip(labels, values))

print(results)

[(1, 0.15989691), (1, 0.1617092), (9, 0.14962792), (9, 0.16899541), (1, 0.16261548), (1, 0.17289816), (1, 0.13728766), (1, 0.15315214), (1, 0.14424478), (9, 0.17937174), (9, 0.1518211), (1, 0.12860791), (9, 0.17310674), (9, 0.14563303), (1, 0.17823018), (9, 0.14206158), (1, 0.18292117), (9, 0.14831856), (1, 0.22245243), (9, 0.1745578), (1, 0.20414244), (1, 0.26987872), (1, 0.16570412), (9, 0.17435187)]

API Reference

Cells

Cell

AnchorCell

BatchNormCell

Cell

ConvCell

DeconvCell

DropoutCell

ElemWiseCell

FMPCell

FcCell

LRNCell

LSTMCell

NormalizeCell

ObjectDetCell

PaddingCell

PoolCell

ProposalCell

ROIPoolingCell

RPCell

ResizeCell

ScalingCell

SoftmaxCell

TargetBiasCell

ThresholdCell

TransformationCell

UnpoolCell

Frame

AnchorCell_Frame

AnchorCell_Frame_CUDA

BatchNormCell_Frame_float

BatchNormCell_Frame_double

BatchNormCell_Frame_CUDA_float

BatchNormCell_Frame_CUDA_double

Cell_Frame_float

Cell_Frame_double

Cell_Frame_CUDA_float

Cell_Frame_CUDA_double

Cell_Frame_Top

ConvCell_Frame_float

ConvCell_Frame_double

ConvCell_Frame_CUDA_float

ConvCell_Frame_CUDA_double

DeconvCell_Frame_float

DeconvCell_Frame_double

DeconvCell_Frame_CUDA_float

DeconvCell_Frame_CUDA_double

DropoutCell_Frame_float

DropoutCell_Frame_double

DropoutCell_Frame_CUDA_float

DropoutCell_Frame_CUDA_double

ElemWiseCell_Frame

ElemWiseCell_Frame_CUDA

FMPCell_Frame

FMPCell_Frame_CUDA

FcCell_Frame_float

FcCell_Frame_double

FcCell_Frame_CUDA_float

FcCell_Frame_CUDA_double

LRNCell_Frame_float

LRNCell_Frame_double

LRNCell_Frame_CUDA_float

LRNCell_Frame_CUDA_double

LSTMCell_Frame_CUDA_float

LSTMCell_Frame_CUDA_double

NormalizeCell_Frame_float

NormalizeCell_Frame_double

NormalizeCell_Frame_CUDA_float

NormalizeCell_Frame_CUDA_double

ObjectDetCell_Frame

ObjectDetCell_Frame_CUDA

PaddingCell_Frame

PaddingCell_Frame_CUDA

PoolCell_Frame_float

PoolCell_Frame_double

PoolCell_Frame_CUDA_float

PoolCell_Frame_CUDA_double

PoolCell_Frame_EXT_CUDA_float

PoolCell_Frame_EXT_CUDA_double

ProposalCell_Frame

ProposalCell_Frame_CUDA

ROIPoolingCell_Frame

ROIPoolingCell_Frame_CUDA

RPCell_Frame

RPCell_Frame_CUDA

ResizeCell_Frame

ResizeCell_Frame_CUDA

ScalingCell_Frame_float

ScalingCell_Frame_double

ScalingCell_Frame_CUDA_float

ScalingCell_Frame_CUDA_double

SoftmaxCell_Frame_float

SoftmaxCell_Frame_double

SoftmaxCell_Frame_CUDA_float

SoftmaxCell_Frame_CUDA_double

TargetBiasCell_Frame_float

TargetBiasCell_Frame_double

TargetBiasCell_Frame_CUDA_float

TargetBiasCell_Frame_CUDA_double

ThresholdCell_Frame

ThresholdCell_Frame_CUDA

TransformationCell_Frame

TransformationCell_Frame_CUDA

UnpoolCell_Frame

UnpoolCell_Frame_CUDA

Filler

Activation

Introduction

Activation functions in N2D2 are passed as arguments to initialize N2D2.Cell.

tanh = N2D2.TanhActivation_Frame_float()

Activation

Activation

LinearActivation

RectifierActivation

TanhActivation

SwishActivation

SaturationActivation

LogisticActivation

SoftplusActivation

Activation_Frame

LinearActivation_Frame

RectifierActivation_Frame

TanhActivation_Frame

SwishActivation_Frame

Solver

Target

Introduction

A N2D2.Target is associated to a N2D2.Cell, it define the output of the network.
The computation of the loss and other tools to compute score such as the confusion matrix are also computed with this class.

To train a neural network you need to use N2D2.Target.provideTargets() then to N2D2.cell.propagate() then N2D2.Target.process() and finally N2D2.Cell.backpropagate().
(See the MNIST example.)

Databases

Introduction:

N2D2 allow you to import default dataset or to load your own dataset.
This can be done suing Database objects.

Download datasets:

To import Data you can use a python Script situated in ./tools/install/install_dataset.py.

This script will download the data in /local/$USER/n2d2_data/.
You can change this path with the environment variable N2D2_data.

Once the dataset downloaded, you can load it with the appropriate class.
Here is an example of the loading of the MNIST dataset :

database = N2D2.MNIST_IDX_Database()
database.load(path)

In this example, the data are located in the folder path.

Database:

Database

MNIST_IDX_Database

Actitracker_Database

AER_Database

Caltech101_DIR_Database

Caltech256_DIR_Database

CaltechPedestrian_Database

CelebA_Database

CIFAR_Database

CKP_Database

DIR_Database

GTSRB_DIR_Database

GTSDB_DIR_Database

ILSVRC2012_Database

IDX_Database

IMDBWIKI_Database

KITTI_Database

KITTI_Object_Database

KITTI_Road_Database

LITISRouen_Database

N_MNIST_Database

DOTA_Database

Fashion_MNIST_IDX_Database

FDDB_Database

Daimler_Database

StimuliProvider

Transformation

Introduction

In order to apply transformation to a dataset, we use the transformation object.

Creation of different Transformation object.

dist = N2D2.DistortionTransformation()
dist.setParameter("ElasticGaussianSize", "21")
dist.setParameter("ElasticSigma", "6.0")
dist.setParameter("ElasticScaling", "36.0")
dist.setParameter("Scaling", "10.0")
dist.setParameter("Rotation", "10.0")

padcrop = N2D2.PadCropTransformation(24, 24)

ct = N2D2.CompositeTransformation(padcrop)
ct.push_back(dist)

To apply Transformation to a dataset, we use an object N2D2.StimuliProvider which acts as a data loader.

Transformations

Transformation

DistortionTransformation

PadCropTransformation

CompositeTransformation

AffineTransformation

ChannelExtractionTransformation

ColorSpaceTransformation

CompressionNoiseTransformation

DCTTransformation

DFTTransformation

EqualizeTransformation

ExpandLabelTransformation

WallisFilterTransformation

ThresholdTransformation

SliceExtractionTransformation

ReshapeTransformation

RescaleTransformation

RangeClippingTransformation

RangeAffineTransformation

RandomAffineTransformation

NormalizeTransformation

MorphologyTransformation

MorphologicalReconstructionTransformation

MagnitudePhaseTransformation

LabelSliceExtractionTransformation

LabelExtractionTransformation

GradientFilterTransformation

ApodizationTransformation

FilterTransformation

FlipTransformation

Containers

Introduction

N2D2 has his own Tensor implementation.

N2D2.Tensor_float([1, 2, 3])

Tensor can be also be created using numpy.array object.

N2D2.CudaTensor_float(numpy.array([[1.0, 2.0], [3.0, 4.0]]))

Tensor

CudaTensor

 Example

Example

In this section we will create a simple convolutional neural network for the dataset MNIST [https://en.wikipedia.org/wiki/MNIST_database] using the python binding of N2D2.

Creation of the network

We first have to create an object Network. This object will be the backbone of the model, linking the different cells.

We have to begin with the initialisation of this object since it creates a seed that generates randomness.

net = N2D2.Network()
deepNet = N2D2.DeepNet(net)

Importation of the dataset

To import the MNIST dataset we will use a custom class N2D2.MNIST_IDX_Database.

database = N2D2.MNIST_IDX_Database()
database.load(path)

In the following code, the path variable represent the path to the dataset MNIST.

Applying transformation to the dataset

We can create transformation using the class N2D2.Transformation.

trans = N2D2.DistortionTransformation()
trans.setParameter("ElasticGaussianSize", "21")
trans.setParameter("ElasticSigma", "6.0")
trans.setParameter("ElasticScaling", "36.0")
trans.setParameter("Scaling", "10.0")
trans.setParameter("Rotation", "10.0")
padcrop = N2D2.PadCropTransformation(24, 24)

But to apply them to the data, we need N2D2.StimuliProvider.

N2D2.StimuliProvider is a class that acts as a data loader for the neural network.

stimuli = N2D2.StimuliProvider(database, [24, 24, 1], batchSize, False)
stimuli.addTransformation(N2D2.PadCropTransformation(24, 24), database.StimuliSetMask(0))
stimuli.addOnTheFlyTransformation(trans, database.StimuliSetMask(0))

We can apply transformation in two ways.
The first one is the standard one, we apply the transformation once to the whole dataset.
This is useful for transformation like normalization or N2D2.PadCropTransformation.
The other way is to add the transformation “on the fly”, this mean that each time we load a data, we apply the transformation.
This is especially adapted to random transformation like N2D2.DistortionTransformation since you add more diversity to the data.

Defining network topology

To define our network topology, we use N2D2.Cell objects.

conv1 = N2D2.ConvCell_Frame_float(deepNet, "conv1", [4, 4], 16, [1, 1], [2, 2], [5, 5], [1, 1], N2D2.TanhActivation_Frame_float())
conv2 = N2D2.ConvCell_Frame_float(deepNet, "conv2", [5, 5], 24, [1, 1], [2, 2], [5, 5], [1, 1], N2D2.TanhActivation_Frame_float())
fc1 = N2D2.FcCell_Frame_float(deepNet, "fc1", 150, N2D2.TanhActivation_Frame_float())
fc2 = N2D2.FcCell_Frame_float(deepNet, "fc2", 10, N2D2.TanhActivation_Frame_float())

Once the cells are created, we need to connect them.

conv2mapping = [
 True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, True, True,
 True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, True, True,
 False, True, True, False, False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, True, True,
 False, False, True, True, False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, True, True,
 False, False, False, True, True, False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, True, True,
 False, False, False, False, True, True, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, True, True,
 False, False, False, False, False, True, True, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, True, True,
 False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, False, False, True, True, False, False, False, True, True,
 False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, False, False, True, True, False, False, True, True,
 False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, False, True, True, False, False, True, True,
 False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, False, True, True, False, True, True,
 False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, True, True, False, True, True,
 False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, False, True, True, True, True,
 False, False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, True, True, True, True,
 False, False, False, False, False, False, False, False, False, False, False, False, False, True, True, False, False, False, False, False, False, True, True, True,
 False, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, False, False, False, False, False, True, True, True]

t_conv2mapping = N2D2.Tensor_bool(numpy.array(conv2mapping))

conv1.addInput(stimuli)
conv2.addInput(conv1, t_conv2mapping)
fc1.addInput(conv2)
fc2.addInput(fc1)

The first layer receive the N2D2.StimuliProvider class as an input. The other layers have their input set with the previous cell.
In this example, we also create a different mapping for the N2D2.ConvCell_Frame_float conv2.

Learning phase

Once the network is created, we can begin the learning phase. First, we need to create a N2D2.Target object. This object defines the output of the network.

tar = N2D2.TargetScore('target', fc2, stimuli)

conv1.initialize()
conv2.initialize()
fc1.initialize()
fc2.initialize()

Finally, we can initiate the learning loop.

for epoch in range(nb_epochs):
 for i in range(epoch_size):
 stimuli.readRandomBatch(set=N2D2.Database.Learn)
 tar.provideTargets(N2D2.Database.Learn)
 conv1.propagate()
 conv2.propagate()
 fc1.propagate()
 fc2.propagate()
 tar.process(N2D2.Database.Learn)
 fc2.backPropagate()
 fc1.backPropagate()
 conv2.backPropagate()
 conv1.backPropagate()
 conv1.update()
 conv2.update()
 fc1.update()
 fc2.update()

 Introduction

Introduction

Welcome to the developer documentation. N2D2 is primarily developed in C++11 and
CUDA (for the GPU computing kernels). The library used internally for images processing is
OpenCV.

N2D2 is structured in module families, each family being defined by a base class,
for example Database, Cell, Export…
In this introduction, we will review the main N2D2 modules structure, which is
summarized in the figure below:

[image: Main N2D2 modules.]

Main N2D2 modules.

The Cell modules

A Cell defines a layer / operator, constituting a base building block of a
neural network (or more generally a compute graph), like a convolution, a
pooling and so on.
The base Cell class is abstract and does not make any assumption on the
compute model, the data precision and even the coding of the data.

The class hierarchy for Cell is shown in the figure below. While it may
seem a bit complicated, it was designed this way to really separate different
notions:

	Mathematical model: the actual mathematical function performed by the Cell,
regardless of the algorithm used for its implementation. For example,
ConvCell for a convolution, or FcCell for a fully connected layer
(or inner product);

	Coding model: the model used to code the data. Frame is for standard
tensor-based deep learning and Spike is for neuromorphic spike coding;

	Programming model: the programming model that will be used for the
implementation, meaning either plain C++ (with OpenMP) for CPU or CUDA for
GPU. Other programming model, like OpenCL, may be added in the future. When
there is only one programming model, the class hierarchy can be simplified
like for Cell_Spike. The Programming model class can be templated to
handle different data precision. For the Cell_Frame<T> and
Cell_Frame_CUDA<T> classes, half, float and double precision
are supported, but may not be implemented for every model (it is not mandatory
to provide implementation for every possible precision);

	Implementation: the actual implementation of the Mathematical model, using
the inherited Coding model and Programming model. The implementation
may use different algorithm to obtain the same Mathematical model, like
direct, GEMM or FFT algorithms for the convolution.

[image: ``Cell`` modules class hierarchy.]

Cell modules class hierarchy.

Cell class

The base Cell class only handles the topological information: the inputs
and outputs dimensions and virtual methods to connect the cells, among other.
The main methods are listed here:

Warning

doxygenclass: breathe_default_project value ‘N2D2’ does not seem to be a valid key for the breathe_projects dictionary

In order to create a computing graph, or neural network, cells can be connected
together thanks to the addInput method. An Cell can be connected to
another Cell or to a StimuliProvider, which constitute an entry point
for the data. It is up to the implementation to allow or not multiple inputs.
The initialize virtual member initializes the state of the Cell in the
implementation (initialization may be different depending on the coding or
programming model).

Warning

doxygenclass: breathe_default_project value ‘N2D2’ does not seem to be a valid key for the breathe_projects dictionary

Cell_Frame_Top class

The Cell_Frame_Top is a purely abstract class, which does not inherit from
the Cell class. It provides
all the actual interface for a given Coding model. For the Frame coding
model, the input/output data is a Nd-tensor. This coding model is also
“bi-directional”, as it supports differentiation, thus its interface comprise
a forward data path and backward data path for the gradient. It is however not
mandatory for the implementation to handle the backward path, for non-differentiable
cells for example.

The main interfaces provided by Cell_Frame_Top are listed below:

Warning

doxygenclass: breathe_default_project value ‘N2D2’ does not seem to be a valid key for the breathe_projects dictionary

This class also handles the Activation and contains the shared pointer to
the Activation object to use.

Warning

doxygenclass: breathe_default_project value ‘N2D2’ does not seem to be a valid key for the breathe_projects dictionary

Cell_Frame<T> class

The Cell_Frame<T> inherits from Cell and Cell_Frame_Top. It contains
the output tensors and input tensor references.
Cell_Frame<T> should not provide more members than Cell_Frame_Top already does.

[image: ``Cell_Frame<T>`` interface.]

Cell_Frame<T> interface.

ConvCell class

The ConvCell class (or any other model) provides additional interfaces to
the base Cell class that it inherits, specific to the Mathematical model
it represents, regardless of the Coding model. For a convolution for example,
getter and setter members are provided for the weights, but also references to
Filler and Solver for the weights. Some facilities may be specific to
a particular coding model. The data structure (tensor) containing the weights
is however not defined in this class, but in the implementation
(ConvCell_Frame), because it can depend on the programming model and data
precision.

The main members (for ConvCell) are:

Warning

doxygenclass: breathe_default_project value ‘N2D2’ does not seem to be a valid key for the breathe_projects dictionary

ConvCell_Frame<T> class

The ConvCell_Frame<T> is the final class implementing the convolution
Mathematical model with the tensor-based Frame Coding model on standard
C++ for CPU Programming model. It is only an implementation class, which
therefore does not provide any new members.

The Tensor<T> class

The Tensor<T> class is the base data structure in N2D2, a Nd-tensor. In
N2D2, a tensor has the following properties:

	Its data is guaranteed to be continuous. It therefore does not handle
arbitrary strides without actual data reorganization. While this property
may appear restricting, it is an assumed design choice to simplify the
implementation of the many possible coding and programming models;

	It holds a reference to the data, meaning no data is actually copied in a
tensor assignment and the new tensor will point to the same data. To perform
an actual copy, the clone() method should be used;

	It is explicitly typed, meaning that the data type is part of the tensor
type, as a template parameter. When the type does not need to be known or can
be arbitrary, a reference to the BaseTensor base class should be used.
Conversion from one tensor type (or from a BaseTensor reference) to another
can be performed with the tensor_cast<T>() function;

	Down to zero overhead type conversion. Memory is only allocated once
for a given type conversion during the lifetime of the tensor.
Type conversion can be made without any data copy-conversion,
with the tensor_cast_nocopy<T>() function, when it is known that a previous
conversion is still valid, thus incurring zero overhead.

The Tensor<T> implementation classes hierarchy is shown in the figure below.

[image: ``Tensor<T>`` implementation classes hierarchy.]

Tensor<T> implementation classes hierarchy.

 Index

Index

 References

References

	BLN+20

	Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: improving low-bit quantization through learnable offsets and better initialization. 2020. arXiv:2004.09576 [https://arxiv.org/abs/2004.09576].

	COR+16

	Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

	DollarWSP09

	P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: a benchmark. In CVPR. 2009.

	FFFP04

	L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In IEEE. CVPR 2004, Workshop on Generative-Model Based Vision. 2004.

	GB10

	X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics, 249–256. 2010.

	GDollarG+17

	Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR, 2017. URL: http://arxiv.org/abs/1706.02677, arXiv:1706.02677 [https://arxiv.org/abs/1706.02677].

	Gra14

	Benjamin Graham. Fractional max-pooling. CoRR, 2014.

	GHP07

	Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. Technical Report, 2007.

	HZRS15

	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV '15, 1026–1034. 2015. doi:10.1109/ICCV.2015.123 [https://doi.org/10.1109/ICCV.2015.123].

	HS97

	Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.1735 [https://doi.org/10.1162/neco.1997.9.8.1735].

	HSS+13

	Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of traffic signs in real-world images: the German Traffic Sign Detection Benchmark. In International Joint Conference on Neural Networks, number 1288. 2013.

	IS15

	Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, 2015.

	JLM10

	Vidit Jain and Erik Learned-Miller. FDDB: a benchmark for face detection in unconstrained settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010.

	JYL19

	Qing Jin, Linjie Yang, and Zhenyu Liao. Towards efficient training for neural network quantization. 2019. arXiv:1912.10207 [https://arxiv.org/abs/1912.10207].

	KB14

	Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, 2014. URL: http://arxiv.org/abs/1412.6980, arXiv:1412.6980 [https://arxiv.org/abs/1412.6980].

	Kri09

	Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, 2009.

	LBBH98

	Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, volume 86, 2278–2324. 1998.

	LWX+11

	Jeffrey W. Lockhart, Gary M. Weiss, Jack C. Xue, Shaun T. Gallagher, Andrew B. Grosner, and Tony T. Pulickal. Design considerations for the wisdm smart phone-based sensor mining architecture. In Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data, SensorKDD '11, 25–33. New York, NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/2003653.2003656, doi:10.1145/2003653.2003656 [https://doi.org/10.1145/2003653.2003656].

	RG14

	A. Rakotomamonjy and G. Gasso. Histogram of gradients of time-frequency representations for audio scene detection. Technical Report, 2014.

	RDS+15

	Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:10.1007/s11263-015-0816-y [https://doi.org/10.1007/s11263-015-0816-y].

	SHK+12

	Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from voverfitting. Journal of Machine Learning Research, 15:1929–1958, 2012.

	SSSI12

	J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition. Neural Networks, 2012. doi:10.1016/j.neunet.2012.02.016 [https://doi.org/10.1016/j.neunet.2012.02.016].

	XBD+17

	Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge J. Belongie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. DOTA: A large-scale dataset for object detection in aerial images. CoRR, 2017. URL: http://arxiv.org/abs/1711.10398, arXiv:1711.10398 [https://arxiv.org/abs/1711.10398].

	ZDM19

	Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual learning without normalization via better initialization. In International Conference on Learning Representations. 2019. URL: https://openreview.net/forum?id=H1gsz30cKX.

	LuceyCohnKanade+10

	P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, volume, 94–101. June 2010. doi:10.1109/CVPRW.2010.5543262 [https://doi.org/10.1109/CVPRW.2010.5543262].

	Warden18

	P. Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. ArXiv e-prints, April 2018. URL: https://arxiv.org/abs/1804.03209, arXiv:1804.03209 [https://arxiv.org/abs/1804.03209].

	WilsonRoelofsStern+17

	Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The Marginal Value of Adaptive Gradient Methods in Machine Learning. arXiv e-prints, pages arXiv:1705.08292, May 2017. arXiv:1705.08292 [https://arxiv.org/abs/1705.08292].

_static/confusion_list.png
2136
5080
2000
4020
027
4293
sor7
s052
4026
001
rn
5054
5083
ra
soa7
r
I
s0a0
4013
s106
002
s
s02¢
s017
sot8
sz
so02
4069
om0
17
sz
sie

Misclassified (sur Is154584)

Name

InVmED/DATABASE/ ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPA9163424 xim
InVmED/DATABASE/ArcelorMita/BDC EUROGAL VA VGALMAGCommurn/Al products(Q37/01/SUPA9206966.xm
InVED/DATABASE/ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPA9211536.xm
nvmeD/DATABASE/IArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49200362.xim
/nvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49168738.xim
/numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173112.xim
InumED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPSOT15524 xim
InuED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products/Q37/01/SUPSOT16094 xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF4918853.xim
nVeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173134xim
numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF4917311 T xim
InumED/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPSOTI5016.xm
InvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts/Q37/01/SUPSOTL5710.xm
nveD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173015.xim
InvED/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA9163427 xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49173034xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173029.xim
InVmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA9163363.xm
InumeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INFA9173227 xim
InvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUP_Q37 46697921, xim
nvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173138.xim
numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPAT58326 L xim
InVED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPAE113474 xim
InvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA101976.xm
InVmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA916343L xim
InvmED/DATABASE/lArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts/Q37/01/SUP_Q37_46698010.xim
nVmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommurn/Al praducts(Q37/01/SUPAT340860 xm
/nvED/DATABASE/ ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPATS72602.xm
nvmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUPATS74040 xim
InVmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUP_Q37 46697974 xim
nVmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUP_Q37 46698036 xim
InvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/SUP_Q37_46697922.xim

Target

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Target
label

1Al products/37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01

Est.

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Estimated
label

1Al products/37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01

cnt

m1266
330521
0363
150825
135376
ma
5263
s
w0172
50159
3aea07
20788
16603
73897
w7030
2086
w2021
aam1
na
1300
a9
as9
st
5998
e
1030
2101
26289
12190
a5
a7

sic

100
%
120
B
=

)
»
160
10

7
B
5
7
»

cnt
sslc
aase

35128
298680
25072
282033
253620
23130
2ms83
230874
236835
2538
207840
207538
109122
198933
189773
157601
155072
12660
130000
ne22s
es90
2o
109087
103800
103000
100367
7367

95737

2500

sa7.00

a30.00

o

Recall Recall Preci
wo ©

65 e

65t 035

0574 o4

o4

1 B
4 H

[]
L
o3

_static/confusion_matrix.png

_static/blending.png
ROI

Flip Extraction

database

Objects objects StimuliProvider

sp_objects

DL Core /
Spike coding

database

StimuliProvider

sp

Images

_static/classes_aggregation.png
Confusion Matrix [/home/0b222806/LIEGE_AOUT/soft2.defect_clsTarget/Confusion

M| % ||~ || & Estimated Target:

e e e | Estimated: 0 (/All products/A1
al (A
B8 prd ped o pod pod pros

i
Al
e
e T
o me ms e Sor Se T ds. 435891
wntprodscsariion w (False neg)
. -

Est.cls Est.non-cls

:al produts/ats/oz
2z Allproducts/arijos SR == non 90862655

32/l products/po2ot

s (true neg)

T

a

7 churoienors:

9 [elmmioiE 55|18 cls: /All products/A11/01

© [l JAll products/a11/02

e JAll products/a11/03
(% Al products/Q02. 22 |s6 Recall: 0.690408

T AllprocucsiQos |4 316 124
1 AllprocuctsQUe/0T | 216 855 8604
12 Al products Q08/02

15 All products Q08/03

Precision: 0.241594

_static/conv1-dat.png

_static/targets_benchmarking.png
100000

10000
|_| OpenmP o
L4 openct & 1000
4 cupa E 100
HLS FPGA £
- 5 10

_static/data_conditioning.png
Test set
Validation set
Learn set

Data channels

DL Core /
Spike coding

Annotation data
(geometric
and pixel-wise)

Nb. of data
(cumulative)

alue’

. Transformation module
C] Data analysis module

Nb. of data
(cumulative)

Value

_static/transformations.png
AllowPucking i
BorderType MimsOneRereetBonder
BokrValie

ot o
ortsery o
RanfmofseX i

Ranfomofsery i

RanfomRotation o

RandmRotaionRarge 00w 30000
Randmcaling o

RandmScalingRangs .m0 12000

RanfomtorizonalFlip

RandomVertcalFlip

Label
[rse— i
Nblteraions 3

St Rectungilar

A 4

SliceExtraction
256x256

Flip
256x256

Morphology
256x256

DATA
256256 1

AllowPucking
BorderType
BokrValie
ot
ortsery
RanfmofseX
Ranfomofsery
RanfomRotation
RandmRotaionRarge
Randmcaling

RandmScalingRangs

U ——

00w 30000

o

.m0 12000

v

SliceExtraction
256x256

DATA
256256 1

AllowPucking i
BorderType MimsOneRereetBonder

BokrValie

ot o
ortsery o
RanfmofseX o
Ranfomofsery o
RanfomRotation o

RandmRotaionRarge 00w 30000
Randmcaling o

RandmScalingRangs .m0 12000

A 4

SliceExtraction
256x256

DATA
256256 1

_static/torch_interop.png
J

y

R —

R —

Forward pass

Backward pass

Torch

n2d2

_static/weightsInitDistrib.png
3500 (— T T T T T T T T T

3000 -

Average: -0.000291476
Std. dev.: 0.0439533

2500 -

2000 -

1500

1000

500

0.4 0.6 0.8

_static/validation_score.png
Success rate

0.935

0.99

0.985

0.98

0.975

0.97

Best validation: 98.2583%

20000

40000

60000

80000
steps

100000

120000

140000

_static/python_api/examples/LeNet_onnx_full.png
1x1x28x28

W (ax1e3s3)
@

W (axae3a3)
@

B (128:576)
<Gz

B (10:128)
<o)

_static/python_api/examples/LeNet_onnx_end.png
Gemm

B (128x576)
C (128)

Gemm

B (10x128)

_static/target_visu.png
Pixels input label (dataset annotation)

o (36 14148265 - | 0 DontCare
M van

Network output estimation: pixels most probable object type | ERSTIE

3 Pedestrian

4 Car
5 Misc

_static/stats.png
Memory [int-8 bits] (bytes)

100k

10k

1k

100

30.98k

256.00

T

EOR

9.60k

57.60k

1.50k

57.60k

1.50k

convl

conve

fel fe2

160k

140k

120k

100k

80k

60k

40k

20k

Computing (MACs)

_static/activations_histogram.png
Normalized number of counts

00000000

10000000

.01000000

00100000

.00010000

00001000

.00000100

00000010

.00000001

st = 2.48932
KL = 414932

Output value

_static/Tvar_P1.png
Un softmax et une
fonction de colt

Fully connected
de n_eivers
nb_classes = 2

Mappage de
Ia bonne sortie
au fully connected
X2

Séquence de sortie
dimension des états
internes n_ei = 3

Séquence d'entrée
dimension des éléments

1 1
‘ ’ oo s

Séquence d'entrée Eléments complétés a zéros

_static/Tvar_Pi.png
Un nombre t
de softmax et de
fonctions de cot

Les (T, t) sorties
restantes sont

Un nombre t
masquées

de fully connected

Mappage des t
premieres sorties
aux t fully connected

Séquence de sortie
dimension des états
internes n_ei = 3

Séquence d'entrée
dimension des éléments :

1 1
’ ’ s

Séquence d'entrée Eléments complétés a zéros

_static/qat_weights_fakeQ.png
6000 — T T

5000 |- + : .
fverage: -0.00247393
Std. dev.: 0.171341

4000 - + :

3000 | » :

2000 | » :

1000 |- » :

oL L ; L.

_static/qat_weights_Clamp.png
300

800

700

600

500

400

300

200

100

Average
Std. dev

00710243
0.175607

_static/recall_definitions.png
relevant elements

1
How many selected

true negatives
o How many relevant I
o items are selected? items are relevant?

; ¢
Recall = Precision = ——— Accuracy =

selected elements

_static/qat_weights_integer.png
8000

7000

6000

5000

4000

3000

2000

1000

fverag

Std. dev.:

-0.0198364
1.34185

_static/recall_precision_table.png
Target class

Selected
class(es)

Other classes
@ (no defect)

Estimated class
Selected Other classes
class(es)
True positive False negative

False positive True negative

Masked false positive

Precision
= X True positive
/ 2 Estimated selected class(es)

A (no
defect)
Masked
false
negative

(Masked

true
negative)

Recall
=2 True
positive

/ 2 Target
selected
class(es)

_static/recall_precision.png
148265/0b222806/n2d2.bin/N2D2/exec/19 8-13h45_MobileNet_Reflex_DEMO_vi

M| %[s]|e Estimated Target:
b Lh 21 3s &s 5h 6b 7:s &s Count Recall Precision it
P e N -~ =~ L oo e O |-l Est. cls Est. non-cls
r icle icle ko pool ank
urt
0: bridge 83276.. 12012 1426.. 1152.. |1583.. 3473 6751. cls
T |1 helicopter [N 12044 209718 316467 254239 163558 52686 81653
:‘ 2: large-vehicle 11884 0282 [SGASOM 160341 88279 18106 745 8aB4 6897 .
g |3:small-vehicie 368698 5627 418171 [BSSOMJY 19383 2194 467 1075 3305 “cls
e & ship |35419.0 20531 235586 71636 |[HEHGH 1390.. 127314 52278 85440
t 5 harbor 71030... 102500 242511 102201 2886... [NBMGNE 69313 90662 22129
6: basketball-court |138281) 12187 26546 20667 26111 118607 [NESSNN 59258 38463
7:swimming-pool 94576 501 655 2319 2797 2738 192
8: storage-tank m 4126 7695 10505 48338 7478

Average recall J Average precision J

_static/second_stimuli.png

_static/recall_precision_table_wo.png
Target class

Selected
class(es)

Other classes

Estimated class

Selected class(es)

True positive

False positive

Precision w/o O

= X True positive

/ 2. Estimated selected
class(es)

Other
classes
False
negative

True
negative

Recall w/o O

= X True positive
/ 2 Target selected
class(es)

_static/qat_netron_r.png
MaxPool

Conv

rmalization

Conv

Activation Function

'y

_static/qat_netron_conv_name.png
1x3%224x224

Conv

BatchNormalization

'NODE PROPERTIES X

ATTRIBUTES

ataticns

goup

kermelshape 7,7

mpuTS.

name: resnet15_ convd fwd

Name of the first Conv

_static/qat_sota.png
Top-1ImageNet accuracy (%)

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

50

3¢

*3
® mied

4 o% 2
d

ResNet

100 150
Weight memory (Mbits)

e 0
IS

L X)

L

IS

200

+LsQ

@ SAT

o TQT

® WRPN
® Bi-Real
e DQ

® CI-BCNN
® LQ-Net
e INQ

® APoT
o HAQ
®ICN

250
Mbits

_images/qat_cell_flow.png
N2D2 Cell Method

minputs mOutputs

(of-1]]
Operator

Learnable

Weights &

Biases 5

Parameters Quantizer
Solver
Workspace
Efficient CUDA
Kernel

Forward

_images/qat_conv_bn.png
Conv Layer
convl
6x28x28
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}
QWeights: SAT on range [255 q-step]

ACT: Linear

'

BaichNorm Layer
bl
6x28x28
ACT: Lincar
QAct: SAT on range [15 g-step]

Pool Layer
pooll
6x14x14
(2.2)
Max Pooling

I

Conv Layer
conv2
16x10x10
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}
QWeights: SAT on range [15 g-step]

ACT: Linear

v
BaichNorm Layer
bn2
16x10x10
ACT: Lincar
QAct: SAT on range [15 g-step]

A
Pool Layer
pool2
16x5x5
(2.2)
Max Pooling

.

Asymetric PADDING! H: {2, 2} W:{2, 2}

Conv Layer
conv3
120x1x1
{5, 5}

QWeights: SAT on range [15 g-step]

ACT: Linear

BaichNorm Layer
bn3
120x1x1
ACT: Lincar

QAct: SAT on range [15 g-step]

v
Dropout Layer
conv3.drop
120x1x1

A 2

84x1x1QWeights: SA’

Fc Layer
fel

T on range [15 g-step]

ACT: Rectifier

A
Dropout Layer
fel.drop
84x1x1

Y

10xIx1QWeights: SAT on range [255 q-step]

Fc Layer
fe2

ACT: Linear

lenet.ini

I

Softmax Layer
softmax
10xIx1

_images/n2d2_cell_diagram.png
Cell

Block ——— @ NeuralNetWorkCell

LY

Iterable

Sequence Layer DeepNetCell

_images/qat_act_flow.png
N2D2 Activation Method

minputs mOutputs

Activation
Quantizer

Activation
Operator

Relu, Tanh, Solver

Swish, Linear Workspace

efc... Efficient CUDA
Kernel

Forward

_images/qat_lenet_clamp.png
800

700

Average: -0.00488335
Std. dev.: 0.230233

600

500

400

300

200

100

_images/qat_lenet_conv_q.png
12000

10000

8000

6000

4000

2000

fverage: -0.00604442
Std, dev.: 0.23507

0.5

_images/qat_conv_nobn.png
Conv Layer
convl
6x28x28
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

A
Pool Layer
pooll
6x14x14
(2.2)
Max Pooling

A A
Conv Layer
conv2
16x10x10
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

'

Pool Layer
pool2
16x5x5
(2.2)
Max Pooling

I

Conv Layer
conv3
120x1x1
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

v

Dropout Layer

conv3.drop
120x1x1

A
Fc Layer
fel
84x1x1
ACT: Rectifier

'

Dropout Layer
fel.drop
84x1x1

Softmax Layer
softmax
10xIx1

lenet.ini

_images/qat_fm_4b.png

_images/qat_netron_conv_name.png
1x3%224x224

Conv

BatchNormalization

'NODE PROPERTIES X

ATTRIBUTES

ataticns

goup

kermelshape 7,7

mpuTS.

name: resnet15_ convd fwd

Name of the first Conv

_static/first_stimuli_fliped.png

_images/qat_netron_r.png
MaxPool

Conv

rmalization

Conv

Activation Function

'y

_static/frameMinusMean.png
200

150

F o 100

B 100

_static/frame0Mean1StdDev.png

_static/gtsrb.png

_static/full_lenet_graph.png
Conv Layer
Conv_0
6x28x28
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}

Pool Layer
Pool2d_0
6x14x14
2,2}
Max Pooling

v
Conv Layer
Conv_l
16x10x10
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}

A
Pool Layer
Pool2d_I
16x5x5
2,2}
Max Pooling

I

Conv Layer
Conv_2
120xIx1
(5.5)
Asymetric PADDING! H: {2, 2} W:{2, 2}

v
Fc Layer
Fe2

84xIx1
ACT: Rectifier

A
Dropout Layer
Dropout_0
84x1x1

'

Fe Layer
Last_fully
10x1x1
ACT: Linear

full_lenet_graph

_static/find_lr-range.png
Learning rate (log scale)

10.

000000

000000

+100000

010000

001000

000100

000010

000001

50

100

150 200 250 300
Tteration # (batch size: 24)

350

400

450

_static/file.png

_static/first_stimuli.png

_static/find_lr.png
Loss

Find where the loss is still decreasing but has not plateaued

950 F T T T T T T 1000
0.0437
950
900
- 900
850 1
- 850
800 B B
- 800
750 1 s
700 4 700
650 650
600
600
- sso
550 1
- s00
500 - A 1
; ; : ; 450

0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000 1.0000000 10.0000000

Learning rate (log scale)

_images/AerialSegNN.png
env
256x256

conv1
32 (128x128)

conv1_3x3_dw

32 (128x128)

convi1_1x1

32 (128x128)

conv2_3x3_dw

32 (128x128)

convZ_1x1

64 (128x128)

conv3_3x3_dw

64 (64x64)

conv3_1x1

64 (64x64)

conv4_3x3_dw

64 (64x64)

conv4_1x1

96 (64x64)

convo_3x
96 (32x

/

/

/

/

/

;

/

/

/

convé_3x3_dw
96 (32x32)

conv6_1x1
128 (32x32)

conv7_1_3x3_dw

128 (32x32)

conv7_1_1x1
128 (32x32)

conv7_2_3x3_dw conv7_2_3x3_dw_drop

128 (32x32)

128 (32x32)

conv7_2_1x1

128 (32x32)

conv7_3_3x3_dw conv7_3_3x3_dw_drop

128 (32x32)

128 (32x32)

conv9_1x1
9 (32x32)

;

-

;

-

)

-

)

_images/Cell_Frame_interface.png
Cell Frame<T>

Cell Frame<T>

Inputs -

DiffOutputs <mm

/ Cell Frame<T> \

[] Interface<> Tensor<T> [wp Output

ml Tensor<T> [l 4=m Difflnput
K . std: :shared ptr<Activation> /

Reference

Value

_images/Adversarial_Signs.png
Logtmae Sampe Advarsais Prubaton Advarsai Samplo
% Stop Sign

_images/AerialSegApp.png
DEMO tour

TP crinl magery Segmentation DEMO preview soure: I
R

2.3741517544812503,48.72468528242081

background...
plane...
large—vehicle
small-vehicle
ship

harbor
ground—track~—f
swimming—pool
storage—tank

_images/Cell_hierarchy.png
f Coding model \ / Programming \

model (if several)
Cell Frame + data precision
_Top (with template)

\\ / Implementation \
\\\\ ~

— | Cell Frame
<T> o 0
— ConvCell
/ _Frame<T>
~ @

S | Cell Frame N
_CUDALT>
Cell
Cell Spike i%f 4

. AN
-

Mathematical model

(CanvCall)
ConvCell

_Frame CUDA

<T>

0
ConvCell

_Spike
~ @

ConvCell j

_images/qat_weights_integer.png
8000

7000

6000

5000

4000

3000

2000

1000

fverag

Std. dev.:

-0.0198364
1.34185

_images/recall_definitions.png
relevant elements

1
How many selected

true negatives
o How many relevant I
o items are selected? items are relevant?

; ¢
Recall = Precision = ——— Accuracy =

selected elements

_images/qat_weights_Clamp.png
300

800

700

600

500

400

300

200

100

Average
Std. dev

00710243
0.175607

_images/qat_weights_fakeQ.png
6000 — T T

5000 |- + : .
fverage: -0.00247393
Std. dev.: 0.171341

4000 - + :

3000 | » :

2000 | » :

1000 |- » :

oL L ; L.

_images/recall_precision_table_wo.png
Target class

Selected
class(es)

Other classes

Estimated class

Selected class(es)

True positive

False positive

Precision w/o O

= X True positive

/ 2. Estimated selected
class(es)

Other
classes
False
negative

True
negative

Recall w/o O

= X True positive
/ 2 Target selected
class(es)

_images/second_stimuli.png

_images/recall_precision.png
148265/0b222806/n2d2.bin/N2D2/exec/19 8-13h45_MobileNet_Reflex_DEMO_vi

M| %[s]|e Estimated Target:
b Lh 21 3s &s 5h 6b 7:s &s Count Recall Precision it
P e N -~ =~ L oo e O |-l Est. cls Est. non-cls
r icle icle ko pool ank
urt
0: bridge 83276.. 12012 1426.. 1152.. |1583.. 3473 6751. cls
T |1 helicopter [N 12044 209718 316467 254239 163558 52686 81653
:‘ 2: large-vehicle 11884 0282 [SGASOM 160341 88279 18106 745 8aB4 6897 .
g |3:small-vehicie 368698 5627 418171 [BSSOMJY 19383 2194 467 1075 3305 “cls
e & ship |35419.0 20531 235586 71636 |[HEHGH 1390.. 127314 52278 85440
t 5 harbor 71030... 102500 242511 102201 2886... [NBMGNE 69313 90662 22129
6: basketball-court |138281) 12187 26546 20667 26111 118607 [NESSNN 59258 38463
7:swimming-pool 94576 501 655 2319 2797 2738 192
8: storage-tank m 4126 7695 10505 48338 7478

Average recall J Average precision J

_images/recall_precision_table.png
Target class

Selected
class(es)

Other classes
@ (no defect)

Estimated class
Selected Other classes
class(es)
True positive False negative

False positive True negative

Masked false positive

Precision
= X True positive
/ 2 Estimated selected class(es)

A (no
defect)
Masked
false
negative

(Masked

true
negative)

Recall
=2 True
positive

/ 2 Target
selected
class(es)

_images/stats.png
Memory [int-8 bits] (bytes)

100k

10k

1k

100

30.98k

256.00

T

EOR

9.60k

57.60k

1.50k

57.60k

1.50k

convl

conve

fel fe2

160k

140k

120k

100k

80k

60k

40k

20k

Computing (MACs)

_static/dnn_example.png
env convl pooll fcl fc2 softmax
24x24 32 (22x22) 32 (11x11) Max 60 10 10

_static/example_graph.png
Fc Layer
Fe_0
50xIx1
ACT: Rectifier

I

Fc Layer
Fe_l
10x1Ix1

example_graph

_images/qat_sota.png
Top-1ImageNet accuracy (%)

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

50

3¢

*3
® mied

4 o% 2
d

ResNet

100 150
Weight memory (Mbits)

e 0
IS

L X)

L

IS

200

+LsQ

@ SAT

o TQT

® WRPN
® Bi-Real
e DQ

® CI-BCNN
® LQ-Net
e INQ

® APoT
o HAQ
®ICN

250
Mbits

_images/validation_score.png
Success rate

0.935

0.99

0.985

0.98

0.975

0.97

Best validation: 98.2583%

20000

40000

60000

80000
steps

100000

120000

140000

_images/weightsInitDistrib.png
3500 (— T T T T T T T T T

3000 -

Average: -0.000291476
Std. dev.: 0.0439533

2500 -

2000 -

1500

1000

500

0.4 0.6 0.8

_images/torch_interop.png
J

y

R —

R —

Forward pass

Backward pass

Torch

n2d2

_images/transformations.png
AllowPucking i
BorderType MimsOneRereetBonder
BokrValie

ot o
ortsery o
RanfmofseX i

Ranfomofsery i

RanfomRotation o

RandmRotaionRarge 00w 30000
Randmcaling o

RandmScalingRangs .m0 12000

RanfomtorizonalFlip

RandomVertcalFlip

Label
[rse— i
Nblteraions 3

St Rectungilar

A 4

SliceExtraction
256x256

Flip
256x256

Morphology
256x256

DATA
256256 1

AllowPucking
BorderType
BokrValie
ot
ortsery
RanfmofseX
Ranfomofsery
RanfomRotation
RandmRotaionRarge
Randmcaling

RandmScalingRangs

U ——

00w 30000

o

.m0 12000

v

SliceExtraction
256x256

DATA
256256 1

AllowPucking i
BorderType MimsOneRereetBonder

BokrValie

ot o
ortsery o
RanfmofseX o
Ranfomofsery o
RanfomRotation o

RandmRotaionRarge 00w 30000
Randmcaling o

RandmScalingRangs .m0 12000

A 4

SliceExtraction
256x256

DATA
256256 1

_static/AerialSegNN.png
env
256x256

conv1
32 (128x128)

conv1_3x3_dw

32 (128x128)

convi1_1x1

32 (128x128)

conv2_3x3_dw

32 (128x128)

convZ_1x1

64 (128x128)

conv3_3x3_dw

64 (64x64)

conv3_1x1

64 (64x64)

conv4_3x3_dw

64 (64x64)

conv4_1x1

96 (64x64)

convo_3x
96 (32x

/

/

/

/

/

;

/

/

/

convé_3x3_dw
96 (32x32)

conv6_1x1
128 (32x32)

conv7_1_3x3_dw

128 (32x32)

conv7_1_1x1
128 (32x32)

conv7_2_3x3_dw conv7_2_3x3_dw_drop

128 (32x32)

128 (32x32)

conv7_2_1x1

128 (32x32)

conv7_3_3x3_dw conv7_3_3x3_dw_drop

128 (32x32)

128 (32x32)

conv9_1x1
9 (32x32)

;

-

;

-

)

-

)

_static/Cell_Frame_interface.png
Cell Frame<T>

Cell Frame<T>

Inputs -

DiffOutputs <mm

/ Cell Frame<T> \

[] Interface<> Tensor<T> [wp Output

ml Tensor<T> [l 4=m Difflnput
K . std: :shared ptr<Activation> /

Reference

Value

_static/Adversarial_Signs.png
Logtmae Sampe Advarsais Prubaton Advarsai Samplo
% Stop Sign

_static/AerialSegApp.png
DEMO tour

TP crinl magery Segmentation DEMO preview soure: I
R

2.3741517544812503,48.72468528242081

background...
plane...
large—vehicle
small-vehicle
ship

harbor
ground—track~—f
swimming—pool
storage—tank

_static/qat_act_flow.png
N2D2 Activation Method

minputs mOutputs

Activation
Quantizer

Activation
Operator

Relu, Tanh, Solver

Swish, Linear Workspace

efc... Efficient CUDA
Kernel

Forward

_static/qat_conv_bn.png
Conv Layer
convl
6x28x28
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}
QWeights: SAT on range [255 q-step]

ACT: Linear

'

BaichNorm Layer
bl
6x28x28
ACT: Lincar
QAct: SAT on range [15 g-step]

Pool Layer
pooll
6x14x14
(2.2)
Max Pooling

I

Conv Layer
conv2
16x10x10
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}
QWeights: SAT on range [15 g-step]

ACT: Linear

v
BaichNorm Layer
bn2
16x10x10
ACT: Lincar
QAct: SAT on range [15 g-step]

A
Pool Layer
pool2
16x5x5
(2.2)
Max Pooling

.

Asymetric PADDING! H: {2, 2} W:{2, 2}

Conv Layer
conv3
120x1x1
{5, 5}

QWeights: SAT on range [15 g-step]

ACT: Linear

BaichNorm Layer
bn3
120x1x1
ACT: Lincar

QAct: SAT on range [15 g-step]

v
Dropout Layer
conv3.drop
120x1x1

A 2

84x1x1QWeights: SA’

Fc Layer
fel

T on range [15 g-step]

ACT: Rectifier

A
Dropout Layer
fel.drop
84x1x1

Y

10xIx1QWeights: SAT on range [255 q-step]

Fc Layer
fe2

ACT: Linear

lenet.ini

I

Softmax Layer
softmax
10xIx1

_static/qat_cell_flow.png
N2D2 Cell Method

minputs mOutputs

(of-1]]
Operator

Learnable

Weights &

Biases 5

Parameters Quantizer
Solver
Workspace
Efficient CUDA
Kernel

Forward

_static/qat_fm_4b.png

_static/qat_conv_nobn.png
Conv Layer
convl
6x28x28
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

A
Pool Layer
pooll
6x14x14
(2.2)
Max Pooling

A A
Conv Layer
conv2
16x10x10
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

'

Pool Layer
pool2
16x5x5
(2.2)
Max Pooling

I

Conv Layer
conv3
120x1x1
{5, 5}
Asymetric PADDING! H: {2, 2} W:{2, 2}

ACT: Rectifier

v

Dropout Layer

conv3.drop
120x1x1

A
Fc Layer
fel
84x1x1
ACT: Rectifier

'

Dropout Layer
fel.drop
84x1x1

Softmax Layer
softmax
10xIx1

lenet.ini

_static/qat_lenet_conv_q.png
12000

10000

8000

6000

4000

2000

fverage: -0.00604442
Std, dev.: 0.23507

0.5

_static/qat_lenet_clamp.png
800

700

Average: -0.00488335
Std. dev.: 0.230233

600

500

400

300

200

100

_static/n2d2_cell_diagram.png
Cell

Block ——— @ NeuralNetWorkCell

LY

Iterable

Sequence Layer DeepNetCell

_static/n2d2-tensor.png
Return

Tensor

_static/plus.png

_images/target_visu.png
Pixels input label (dataset annotation)

o (36 14148265 - | 0 DontCare
M van

Network output estimation: pixels most probable object type | ERSTIE

3 Pedestrian

4 Car
5 Misc

_images/targets_benchmarking.png
100000

10000
|_| OpenmP o
L4 openct & 1000
4 cupa E 100
HLS FPGA £
- 5 10

_static/LabelSliceExtractionTransformation_apply__ter_W64_H64_S0.png

_static/N2D2-logo-dark.png
@ N2p2

_static/LabelSliceExtractionTransformation_apply__quater_W64_H64_S0.png

_static/LabelSliceExtractionTransformation_apply__ter_W64_H64_S-32.png

_static/Tensor_diagram.png
Abstract class

for

DataTensor

BaseData
Tensor

- Reference
B vaie

Wrapper around
std: :vector<T> With
lazy allocation

DataTensor<T>

B std::vector<T>

types

Holds references to converted data types created
by tensor_ cast<T>()

BaseTensor

std: :map<const std::type info¥*,
std: :shared ptr<BaseDataTensor>>

Tensor<T>

std: :shared ptr<DataTensor<T>>

_static/N2D2_Logo.png

_static/N2D2_modules.png
Modeling & user
interface:

[Native INI AP]

[Partner interfaces]

Available soon

ﬂ:ore modules (C++)\

[Database

(public dataset drivers)

(data pre/post processing)

]
[Transformation]
]

[Cell

(NN layers modeling)

Activation

Solver

Quantizer
Filler
[Target

(loss & score processing)

[Export modules)

C++/OpenMP

TensorRT
/ CuDNN / CUDA

PNeuro

[Export

(optimized code generation)

Partner modules

|
\))

DNeuro B2

R-Car enesas

HW Provider IPs

— Générique MCU

S STM32 &7

D Open source
D CEA IP under license

D Partner IP under
partner license

Export specialization
(compute kernels
level) :

STxP70/ASMP &7

Confidentiel

HW Provider LIBs

N

_static/items_viewer.png

_static/interactive_confusion_main.png
mo@nw

Al products/A11/01
Al products/A11/02
Al products/A11/03
Al products/Doz/o1
Al products/Do2/02
Al productsiLes

Al productsMOUS/o1
Al productsMOUS/02
Al products PART
A products/Q02

10: /Al productsioa
11 /Al productsiQos/or
12: /Al productsios/o2
13: /Al productsiQos/o3
14: /Al productsiQos/o
15: /Al products/Q13/01
16: /Al productsiQ13/02
17: /Al productsiQ19/01
18: /Al products/Q19/02
19: /Al productsiQ32
20: /Al productsiQ37/01
21 Al productsia37/02
22: /Al productsiQa1jor
23: Al productsiQa1/o2
24: /Al productsias3
25: /Al productsiass
26: /Al productsiQss/o1
27: Al productsiass/o2
28: /Al productsiQss/o3
29: Al productsiaes
30: /Al productsiQa3/01
31 /Al productsiQ3/02
32: /Al productsiasy
3 Al productsT1

382 Al productsiTA2

35: /Al products TF/OL
36: /Al products TFa/02.
37: Al products TFa/03
38: Only GALQUS/OL
39: only GALQUS/02
40:nly GALIQOG/03
41 fonly GALIGS0
42:/only GALGS.

3 nly GALIGSD

4 fonly GALIGS4.

5 fonly MAGIOS0/0L
45 fonly MAGIOS0/02
47 fonly MAGIOS0/03
5 fonly MAGIOE2/01
45 /only MAGI062/02
50: /Only MAGIQ62103
51 /Only MAGIQ62104
52:JOnly MAGIQE3.
50

Count

Confusion Matrix [/local/ls154584/0b222806/n2d2_cmak efect_cis.Target/ConfusionMatrix_test.dat] (sur Is154584)

Target:
Estimated:
0117 27 (37 & (507 67 707 87 (907 10: L [12: 13 [1a: 15 |16: (17 |16 (19 20: (21 |22: 23 |28: 25 |26: [27: 28: [20: 30 30 |32 |35 |3 35 |36: |37 |38: 30 [40: 41 42: 43 4d: d>: 46: 47: 45: 49 50: 51 52: 53 Cowt [Recal |Recall |Precson |Precsion
a a w A w A AR AR R DAL A I8 R DA R A AL (A AL (A AN (AL A JAD A AN L AR AL AN AL AN /AL JAI [On fOn fOnt JOntJon) O O /O 1O fOn {Oni {On fOn fon o & o2 wed A Ao
roc pro pre proe proc proc proc proe orac proc oro pr ora ro o oro 'pro pro ‘ro ' 'aro 'oro oro ‘ro ‘oo 'aro 'oro oo ‘ro ‘o 'aro 'oro o o ‘oo 'aro 'oro e G Gy Gy G4y G4 Gy Gy My y Ty B s
Hicks bt Gt bt Dt bt it bt ks sl duct dut dch At et At et At et At et At duc hct dc hct et ot ol due cct duet dut L0¢ L0t L (16 11 e 13 610 610 &0 &10 610,610, 610, 60
JATA K13 JATS G0t /507 153 MO| /MO AR 100 10 <10C 10C s10C 10C <101 101 S101 101 S0 103 s 104 S04 510 <103 5105 si0% 503 sie s SiGE S s1To STA /TP <TE /T 6101 6105 61020 4~ 9 4 601 01 0102 2100 2105 210 1043
o1 o2 03 01 J02SUOLSIOZT | 4 BIOY §02 403 804 501 3025101 81022 7101 102 0L Va2 3 o a1 oz a03 > /01 G231 |2 w0 4102 403 dls
| e 1| 18 12 [SpSp S (7 o] |1 1.2 |v| |15 8.2 A ESESENESE] T
3 e To[2 (3 (6| [3.[7 1[4 5L E 2 N 2 0 0 P gy g o g MR B2
oo 2 @ (1. [3.|2[1® ERCNED (5.1 |1 7 ENEEME! (3. i m| |3 |3 per
| (1.6 (5.3 ERCA 2 2 2 5 CRIE s
2| (316 s (48] 9 (s 25 @ (1 (18 |4 W1
2| (3.5 [Ljm| (1| |13 4) (2
s 10 s 1 |14 [1o[6. |2 L g 2 53 [P
= 3 5 o] (2[4 52 £ 1
52 nom T
28 ESERENERENE] ESjES] Tojo. (26316 |2 u [NEND ile. B a2 1| 1| |2
CRENISERCARNESCNTES | L T e[| (8| [1.|2.[3.|4 | |3 Lo(2 (362 6. 3| (6 (17722 (27| 1|1 5|1
o s EREMES - CHESsENE GAEA0 ESE P R PR o o528 3 (3 102 17
3. 2 0 s s
COEN ENCEE 1 3 5 I
T |8 3. | e 0 w7 2 7% 0 B
1
B

3871871

I o-o.co5 [8=0:755 | NN o-0<%

_static/memory_mapping.png
Memory usage (KWords)

1200

1000

800

600

400

200

0

\gl

LIRS

|Peak usage®='1186.5 KWords. 4

01234567 89101112131415161 7181 RR R 2 P22 72802 BB1323B435363 73834041424 3445464 7484 B (51553555565 7585% 0616 26 36465666 168697 07 17 27 37475716
Time

_static/meanData.png
B 120

B 100

_static/minus.png

_static/metrics.png
Sensitivity &

Fl-score mmmmm

Precision e
Informedness

0.999

0.998

0.997 £

0.996 F

0.995

0.994

0.993

0.992

OV

_static/gtsrbStatsComputingRelative.png
99°bb

*Th

000
2071
000
Sz°or

b0

15

45

40

(%) Butinduog

07reu o5
1704
o™anodo.q
0704
171004
17Auog

071004

0”ung

_static/gtsrbConfusionMatrix.png

_static/gtsrbStatsParametersRelative.png
00%0
5o
00%0
929
00%0
bo-- R
00%0
750

(%) [5376 8-3uT]flouay ueeq

oRew 405
7oy
0™jnodoug
0724
171004
1mnu0g

071004

0”ung

_static/gtsrbStatsDataRelative.png
120 0Tveug 05
bre0- 1724
£970-ff 0TInodoag
g970-f 0724
9e°7-ff 171004
122t e 1 huod

8697 071004

70
60

(%) [5179 g-quT]fiowsy eleq

_static/gtsrbSuccessLearning.png
Success rate

0.98

0.96

0.94

0.92

0.9

0.88

Final:

93.8292%

100

200

300
steps

400

500

600

_static/FaceDetectionDEMO.jpg

_static/LabelSliceExtractionTransformation_apply__quater_W64_H64_S-32.png

_static/Cell_hierarchy.png
f Coding model \ / Programming \

model (if several)
Cell Frame + data precision
_Top (with template)

\\ / Implementation \
\\\\ ~

— | Cell Frame
<T> o 0
— ConvCell
/ _Frame<T>
~ @

S | Cell Frame N
_CUDALT>
Cell
Cell Spike i%f 4

. AN
-

Mathematical model

(CanvCall)
ConvCell

_Frame CUDA

<T>

0
ConvCell

_Spike
~ @

ConvCell j

_images/LabelSliceExtractionTransformation_apply__quater_W64_H64_S0.png

_images/LabelSliceExtractionTransformation_apply__ter_W64_H64_S-32.png

_images/FaceDetectionDEMO.jpg

_images/LabelSliceExtractionTransformation_apply__quater_W64_H64_S-32.png

_images/N2D2_modules.png
Modeling & user
interface:

[Native INI AP]

[Partner interfaces]

Available soon

ﬂ:ore modules (C++)\

[Database

(public dataset drivers)

(data pre/post processing)

]
[Transformation]
]

[Cell

(NN layers modeling)

Activation

Solver

Quantizer
Filler
[Target

(loss & score processing)

[Export modules)

C++/OpenMP

TensorRT
/ CuDNN / CUDA

PNeuro

[Export

(optimized code generation)

Partner modules

|
\))

DNeuro B2

R-Car enesas

HW Provider IPs

— Générique MCU

S STM32 &7

D Open source
D CEA IP under license

D Partner IP under
partner license

Export specialization
(compute kernels
level) :

STxP70/ASMP &7

Confidentiel

HW Provider LIBs

N

_images/Tensor_diagram.png
Abstract class

for

DataTensor

BaseData
Tensor

- Reference
B vaie

Wrapper around
std: :vector<T> With
lazy allocation

DataTensor<T>

B std::vector<T>

types

Holds references to converted data types created
by tensor_ cast<T>()

BaseTensor

std: :map<const std::type info¥*,
std: :shared ptr<BaseDataTensor>>

Tensor<T>

std: :shared ptr<DataTensor<T>>

_images/LabelSliceExtractionTransformation_apply__ter_W64_H64_S0.png

_images/LeNet_onnx_full.png
1x1x28x28

W (ax1e3s3)
@

W (axae3a3)
@

B (128:576)
<Gz

B (10:128)
<o)

_images/Tvar_P1.png
Un softmax et une
fonction de colt

Fully connected
de n_eivers
nb_classes = 2

Mappage de
Ia bonne sortie
au fully connected
X2

Séquence de sortie
dimension des états
internes n_ei = 3

Séquence d'entrée
dimension des éléments

1 1
‘ ’ oo s

Séquence d'entrée Eléments complétés a zéros

_images/Tvar_Pi.png
Un nombre t
de softmax et de
fonctions de cot

Les (T, t) sorties
restantes sont

Un nombre t
masquées

de fully connected

Mappage des t
premieres sorties
aux t fully connected

Séquence de sortie
dimension des états
internes n_ei = 3

Séquence d'entrée
dimension des éléments :

1 1
’ ’ s

Séquence d'entrée Eléments complétés a zéros

_images/activations_histogram.png
Normalized number of counts

00000000

10000000

.01000000

00100000

.00010000

00001000

.00000100

00000010

.00000001

st = 2.48932
KL = 414932

Output value

nav.xhtml

 Table of Contents

 		
 N2D2

 		
 Presentation

 		
 Database handling

 		
 Data pre-processing

 		
 Deep network building

 		
 Performances evaluation

 		
 Hardware exports

 		
 Summary

 		
 About N2D2-IP

 		
 Performing simulations

 		
 Minimum system requirements

 		
 Obtaining N2D2

 		
 Prerequisites

 		
 Getting the sources

 		
 Compilation

 		
 Downloading training datasets

 		
 Run the learning

 		
 Test a learned network

 		
 Interpreting the results

 		
 Performance evaluation tools

 		
 Key performance metrics

 		
 Interactive Confusion Matrix Tool

 		
 Overview

 		
 Single class performances evaluation

 		
 Classes aggregation

 		
 Selected items table view

 		
 Items viewer

 		
 Automatic Performances Report Generation

 		
 Tutorials

 		
 Learning deep neural networks: tips and tricks

 		
 Choose the learning solver

 		
 Choose the learning hyper-parameters

 		
 Convergence and normalization

 		
 Building a classifier neural network

 		
 Building a segmentation neural network

 		
 Faces detection

 		
 Gender recognition

 		
 ROIs extraction

 		
 Data visualization

 		
 Transcoding a learned network in spike-coding

 		
 Render the network compatible with spike simulations

 		
 Configure spike-coding parameters

 		
 Obtain ONNX models

 		
 Convert from PyTorch

 		
 Convert from TF/Keras

 		
 Download pre-trained models

 		
 Import ONNX models

 		
 Preliminary steps

 		
 With an INI file

 		
 ONNX INI section type

 		
 Transpose option usage

 		
 Supported operators

 		
 Train from ONNX models

 		
 With an INI file

 		
 1) Remove the original classifier

 		
 2) Add a new classifier to the ONNX model

 		
 3) Fine tuning (optional)

 		
 With the Python API

 		
 Post-training quantization

 		
 Principle

 		
 1) Weights normalization

 		
 2) Activations normalization

 		
 3) Quantization

 		
 Additional optimization strategies

 		
 Usage in N2D2

 		
 -act-rescaling-mode

 		
 Command line example

 		
 With the python API

 		
 Examples and results

 		
 Quantization-Aware Training

 		
 Getting Started

 		
 Cell Quantizer Definition

 		
 LSQ

 		
 SAT

 		
 Activation Quantizer Definition

 		
 LSQ

 		
 SAT

 		
 Layer compatibility table

 		
 Tutorial

 		
 ONNX model : ResNet-18 Example - INI File

 		
 ONNX model : ResNet-18 Example - Python

 		
 Hand-Made model : LeNet Example - INI File

 		
 Hand-Made model : LeNet Example - Python

 		
 Results

 		
 Training Time Performances

 		
 MobileNet-v1

 		
 MobileNet-v2

 		
 ResNet

 		
 Inception-v1

 		
 Pruning

 		
 Getting Started

 		
 Example with Python

 		
 Pruning mode

 		
 Pruning filler

 		
 Example with INI file

 		
 Export: C++

 		
 Principle

 		
 Graph optimizations

 		
 Memory optimizations

 		
 Export parameters

 		
 Example

 		
 Export: C++/STM32

 		
 Principle

 		
 Usage

 		
 Export: TensorRT

 		
 Informations

 		
 Export parameters

 		
 Benchmark your TensorRT Model - C++ Benchmark

 		
 Analyse the execution performances of your TensorRT Model (FP32)

 		
 Deploy your TensorRT Model in Application

 		
 Export: DNeuro

 		
 Introduction

 		
 Interface

 		
 Supported layers

 		
 Usage

 		
 Simulation

 		
 C++ emulation

 		
 Synthesis

 		
 Export parameters

 		
 FPGA compatibility tables

 		
 Aerial Imagery Segmentation DEMO

 		
 Specifications

 		
 Application preview

 		
 DNeuro generation

 		
 Face Detection DEMO

 		
 Export: ONNX

 		
 Principle

 		
 Graph optimizations

 		
 Export parameters

 		
 Example

 		
 Export: other / legacy

 		
 C export

 		
 CPP_OpenCL export

 		
 CPP_cuDNN export

 		
 C_HLS export

 		
 Layer compatibility table

 		
 Introduction

 		
 Syntax

 		
 Properties

 		
 Sections

 		
 Case sensitivity

 		
 Comments

 		
 Quoted values

 		
 Whitespace

 		
 Escape characters

 		
 Template inclusion syntax

 		
 Variable substitution

 		
 Control statements

 		
 Global parameters

 		
 Databases

 		
 Introduction

 		
 CompositeLabel parameter

 		
 Multi-channel handling

 		
 MNIST

 		
 GTSRB

 		
 Directory

 		
 Speech Commands Dataset

 		
 CSV data files

 		
 Usage example

 		
 Other built-in databases

 		
 Actitracker_Database

 		
 CIFAR10_Database

 		
 CIFAR100_Database

 		
 CKP_Database

 		
 Caltech101_DIR_Database

 		
 Caltech256_DIR_Database

 		
 CaltechPedestrian_Database

 		
 Cityscapes_Database

 		
 Daimler_Database

 		
 DOTA_Database

 		
 FDDB_Database

 		
 GTSDB_DIR_Database

 		
 ILSVRC2012_Database

 		
 KITTI_Database

 		
 KITTI_Road_Database

 		
 KITTI_Object_Database

 		
 LITISRouen_Database

 		
 Dataset images slicing

 		
 Stimuli data analysis

 		
 Zero-mean and unity standard deviation normalization

 		
 Substracting the mean image of the set

 		
 Stimuli provider (Environment)

 		
 Introduction

 		
 Data range and conversion

 		
 Images slicing during training and inference

 		
 Blending for data augmentation

 		
 Built-in transformations

 		
 AffineTransformation

 		
 ApodizationTransformation

 		
 CentroidCropTransformation

 		
 BlendingTransformation

 		
 ChannelDropTransformation

 		
 ChannelExtractionTransformation

 		
 ChannelShakeTransformation

 		
 ColorSpaceTransformation

 		
 DFTTransformation

 		
 DistortionTransformation

 		
 EqualizeTransformation

 		
 ExpandLabelTransformation

 		
 FilterTransformation

 		
 FlipTransformation

 		
 GradientFilterTransformation

 		
 LabelFilterTransformation

 		
 LabelSliceExtractionTransformation

 		
 MagnitudePhaseTransformation

 		
 MorphologicalReconstructionTransformation

 		
 MorphologyTransformation

 		
 NormalizeTransformation

 		
 PadCropTransformation

 		
 ROIExtractionTransformation

 		
 RandomAffineTransformation

 		
 RangeAffineTransformation

 		
 RangeClippingTransformation

 		
 RescaleTransformation

 		
 ReshapeTransformation

 		
 SliceExtractionTransformation

 		
 StripeRemoveTransformation

 		
 ThresholdTransformation

 		
 TrimTransformation

 		
 WallisFilterTransformation

 		
 Network Layers

 		
 Layer definition

 		
 Weight fillers

 		
 ConstantFiller

 		
 HeFiller

 		
 NormalFiller

 		
 UniformFiller

 		
 XavierFiller

 		
 Weight solvers

 		
 SGDSolver_Frame

 		
 SGDSolver_Frame_CUDA

 		
 AdamSolver_Frame

 		
 AdamSolver_Frame_CUDA

 		
 Activation functions

 		
 Logistic

 		
 LogisticWithLoss

 		
 Rectifier

 		
 Saturation

 		
 Softplus

 		
 Tanh

 		
 TanhLeCun

 		
 Anchor

 		
 Configuration parameters (Frame models)

 		
 Outputs remapping

 		
 BatchNorm

 		
 Configuration parameters (Frame models)

 		
 Conv

 		
 Configuration parameters (Frame models)

 		
 Configuration parameters (Spike models)

 		
 Deconv

 		
 Configuration parameters (Frame models)

 		
 Dropout

 		
 Configuration parameters (Frame models)

 		
 ElemWise

 		
 Sum operation

 		
 AbsSum operation

 		
 EuclideanSum operation

 		
 Prod operation

 		
 Max operation

 		
 Examples

 		
 FMP

 		
 Configuration parameters (Frame models)

 		
 Fc

 		
 Configuration parameters (Frame models)

 		
 Configuration parameters (Spike models)

 		
 LRN

 		
 Configuration parameters (Frame models)

 		
 LSTM

 		
 Global layer parameters (Frame_CUDA models)

 		
 Configuration parameters (Frame_CUDA models)

 		
 Current restrictions

 		
 Further development requirements

 		
 Development guidance

 		
 Normalize

 		
 Padding

 		
 Pool

 		
 Maxout example

 		
 Configuration parameters (Spike models)

 		
 Rbf

 		
 Configuration parameters (Frame models)

 		
 Resize

 		
 Configuration parameters

 		
 Softmax

 		
 Transformation

 		
 Threshold

 		
 Configuration parameters (Frame models)

 		
 Unpool

 		
 Targets (outputs & losses)

 		
 From labels to targets

 		
 Pixel-wise segmentation

 		
 Loss functions

 		
 Target types

 		
 Target

 		
 TargetScore

 		
 TargetROIs

 		
 Adversarial module

 		
 For the users

 		
 Run an adversarial attack

 		
 1st function to study adversarial attacks

 		
 2nd function to study adversarial attacks

 		
 For the developers

 		
 Introduction

 		
 Installation of the virtual environment

 		
 Installation of the Python API

 		
 With the Python Package Index (Py Pi)

 		
 From the N2D2 Github repository

 		
 If you have already cloned the Github repository

 		
 Installation for developer

 		
 Frequent issues

 		
 Test of the Python API

 		
 Default values

 		
 List of modifiable parameters

 		
 Example

 		
 Databases

 		
 Introduction

 		
 Database

 		
 DIR

 		
 Numpy

 		
 MNIST

 		
 ILSVRC2012

 		
 CIFAR10

 		
 CIFAR100

 		
 Cityscapes

 		
 GTSRB

 		
 Transformations

 		
 Composite

 		
 PadCrop

 		
 Distortion

 		
 Rescale

 		
 Reshape

 		
 ColorSpace

 		
 Flip

 		
 RangeAffine

 		
 SliceExtraction

 		
 RandomResizeCrop

 		
 ChannelExtraction

 		
 Sending data to the Neural Network

 		
 Example

 		
 Cells

 		
 Introduction

 		
 Block

 		
 Sequence

 		
 Layer

 		
 DeepNetCell

 		
 Cells

 		
 NeuralNetworkCell

 		
 Conv

 		
 Deconv

 		
 Fc

 		
 Dropout

 		
 ElemWise

 		
 Padding

 		
 Softmax

 		
 BatchNorm2d

 		
 Pool

 		
 Activation

 		
 Reshape

 		
 Resize

 		
 Scaling

 		
 Transformation

 		
 Transpose

 		
 Saving parameters

 		
 Configuration section

 		
 Usage example

 		
 Mapping

 		
 Solver

 		
 Usage example

 		
 SGD

 		
 Adam

 		
 Filler

 		
 Usage example

 		
 He

 		
 Normal

 		
 Constant

 		
 Xavier

 		
 Activations

 		
 Linear

 		
 Rectifier

 		
 Tanh

 		
 Target

 		
 Usage example

 		
 Tensor

 		
 Introduction

 		
 Tensor

 		
 Manipulating tensors

 		
 Coordinates

 		
 Index

 		
 Slice

 		
 Set values method

 		
 Numpy

 		
 To Numpy

 		
 From Numpy

 		
 CUDA Tensor

 		
 Synchronization example

 		
 Interoperability

 		
 Keras [experimental feature]

 		
 Presentation

 		
 Documentation

 		
 Example

 		
 PyTorch [experimental feature]

 		
 Presentation

 		
 Tensor conversion

 		
 Documentation

 		
 Example

 		
 Export

 		
 Listing available cells for an export

 		
 Export C

 		
 Exportable cells

 		
 Documentation

 		
 Example

 		
 Frequently asked question

 		
 Export CPP

 		
 Exportable cells

 		
 Documentation

 		
 Example

 		
 Export CPP TensorRT

 		
 Exportable cells

 		
 Documentation

 		
 Example

 		
 Example

 		
 Data augmentation

 		
 Preliminary

 		
 Loading data

 		
 Data augmentation

 		
 Getting labels

 		
 Performance analysis

 		
 Use-case presentation

 		
 Creation of the network

 		
 Performance analysis tools

 		
 Load from ONNX

 		
 Loading an ONNX

 		
 Training and exporting the model

 		
 Graph manipulation

 		
 Printing n2d2 graph

 		
 Manipulating Sequences

 		
 Load Numpy Data

 		
 Preliminary

 		
 Load data into N2D2

 		
 Training a model using the numpy database

 		
 Torch interoperability

 		
 Example

 		
 Keras interoperability

 		
 Example

 		
 Core N2D2

 		
 Introduction

 		
 DeepNet

 		
 Introduction

 		
 API Reference

 		
 Cells

 		
 Cell

 		
 Frame

 		
 Filler

 		
 Activation

 		
 Introduction

 		
 Activation

 		
 Activation_Frame

 		
 Solver

 		
 Target

 		
 Introduction

 		
 Databases

 		
 Introduction:

 		
 Download datasets:

 		
 Database:

 		
 StimuliProvider

 		
 Transformation

 		
 Introduction

 		
 Transformations

 		
 Containers

 		
 Introduction

 		
 Tensor

 		
 CudaTensor

 		
 Example

 		
 Creation of the network

 		
 Importation of the dataset

 		
 Applying transformation to the dataset

 		
 Defining network topology

 		
 Learning phase

 		
 Introduction

 		
 The Cell modules

 		
 Cell class

 		
 Cell_Frame_Top class

 		
 Cell_Frame<T> class

 		
 ConvCell class

 		
 ConvCell_Frame<T> class

 		
 The Tensor<T> class

_images/confusion_list.png
2136
5080
2000
4020
027
4293
sor7
s052
4026
001
rn
5054
5083
ra
soa7
r
I
s0a0
4013
s106
002
s
s02¢
s017
sot8
sz
so02
4069
om0
17
sz
sie

Misclassified (sur Is154584)

Name

InVmED/DATABASE/ ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPA9163424 xim
InVmED/DATABASE/ArcelorMita/BDC EUROGAL VA VGALMAGCommurn/Al products(Q37/01/SUPA9206966.xm
InVED/DATABASE/ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPA9211536.xm
nvmeD/DATABASE/IArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49200362.xim
/nvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49168738.xim
/numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173112.xim
InumED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPSOT15524 xim
InuED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products/Q37/01/SUPSOT16094 xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF4918853.xim
nVeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173134xim
numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF4917311 T xim
InumED/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPSOTI5016.xm
InvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts/Q37/01/SUPSOTL5710.xm
nveD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173015.xim
InvED/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA9163427 xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/INF49173034xim
nvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173029.xim
InVmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA9163363.xm
InumeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INFA9173227 xim
InvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUP_Q37 46697921, xim
nvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/INF49173138.xim
numeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPAT58326 L xim
InVED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPAE113474 xim
InvmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA101976.xm
InVmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUPA916343L xim
InvmED/DATABASE/lArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts/Q37/01/SUP_Q37_46698010.xim
nVmeD/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommurn/Al praducts(Q37/01/SUPAT340860 xm
/nvED/DATABASE/ ArcelorMita/BDC EUROGAL VA VGALMAGCommun/Al products(Q37/01/SUPATS72602.xm
nvmED/DATABASE/ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUPATS74040 xim
InVmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al products(Q37/01/SUP_Q37 46697974 xim
nVmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Al praducts(Q37/01/SUP_Q37 46698036 xim
InvmeD/DATABASE/ ArcelorMita/BDC EUROGAL V4 VGALMAGCommun/Alproducts(Q37/01/SUP_Q37_46697922.xim

Target

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Target
label

1Al products/37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01

Est.

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Estimated
label

1Al products/37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01
1Al productsq37/01

cnt

m1266
330521
0363
150825
135376
ma
5263
s
w0172
50159
3aea07
20788
16603
73897
w7030
2086
w2021
aam1
na
1300
a9
as9
st
5998
e
1030
2101
26289
12190
a5
a7

sic

100
%
120
B
=

)
»
160
10

7
B
5
7
»

cnt
sslc
aase

35128
298680
25072
282033
253620
23130
2ms83
230874
236835
2538
207840
207538
109122
198933
189773
157601
155072
12660
130000
ne22s
es90
2o
109087
103800
103000
100367
7367

95737

2500

sa7.00

a30.00

o

Recall Recall Preci
wo ©

65 e

65t 035

0574 o4

o4

1 B
4 H

[]
L
o3

_images/confusion_matrix.png

_images/blending.png
ROI

Flip Extraction

database

Objects objects StimuliProvider

sp_objects

DL Core /
Spike coding

database

StimuliProvider

sp

Images

_images/classes_aggregation.png
Confusion Matrix [/home/0b222806/LIEGE_AOUT/soft2.defect_clsTarget/Confusion

M| % ||~ || & Estimated Target:

e e e | Estimated: 0 (/All products/A1
al (A
B8 prd ped o pod pod pros

i
Al
e
e T
o me ms e Sor Se T ds. 435891
wntprodscsariion w (False neg)
. -

Est.cls Est.non-cls

:al produts/ats/oz
2z Allproducts/arijos SR == non 90862655

32/l products/po2ot

s (true neg)

T

a

7 churoienors:

9 [elmmioiE 55|18 cls: /All products/A11/01

© [l JAll products/a11/02

e JAll products/a11/03
(% Al products/Q02. 22 |s6 Recall: 0.690408

T AllprocucsiQos |4 316 124
1 AllprocuctsQUe/0T | 216 855 8604
12 Al products Q08/02

15 All products Q08/03

Precision: 0.241594

_images/dnn_example.png
env convl pooll fcl fc2 softmax
24x24 32 (22x22) 32 (11x11) Max 60 10 10

_images/example_graph.png
Fc Layer
Fe_0
50xIx1
ACT: Rectifier

I

Fc Layer
Fe_l
10x1Ix1

example_graph

_images/conv1-dat.png

_images/data_conditioning.png
Test set
Validation set
Learn set

Data channels

DL Core /
Spike coding

Annotation data
(geometric
and pixel-wise)

Nb. of data
(cumulative)

alue’

. Transformation module
C] Data analysis module

Nb. of data
(cumulative)

Value

_images/first_stimuli.png

_images/first_stimuli_fliped.png

_images/find_lr-range.png
Learning rate (log scale)

10.

000000

000000

+100000

010000

001000

000100

000010

000001

50

100

150 200 250 300
Tteration # (batch size: 24)

350

400

450

_images/find_lr.png
Loss

Find where the loss is still decreasing but has not plateaued

950 F T T T T T T 1000
0.0437
950
900
- 900
850 1
- 850
800 B B
- 800
750 1 s
700 4 700
650 650
600
600
- sso
550 1
- s00
500 - A 1
; ; : ; 450

0.0000010 0.0000100 0.0001000 0.0010000 0.0100000 0.1000000 1.0000000 10.0000000

Learning rate (log scale)

_images/full_lenet_graph.png
Conv Layer
Conv_0
6x28x28
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}

Pool Layer
Pool2d_0
6x14x14
2,2}
Max Pooling

v
Conv Layer
Conv_l
16x10x10
(5.5
Asymetric PADDING! H: {2, 2} W:{2, 2}

A
Pool Layer
Pool2d_I
16x5x5
2,2}
Max Pooling

I

Conv Layer
Conv_2
120xIx1
(5.5)
Asymetric PADDING! H: {2, 2} W:{2, 2}

v
Fc Layer
Fe2

84xIx1
ACT: Rectifier

A
Dropout Layer
Dropout_0
84x1x1

'

Fe Layer
Last_fully
10x1x1
ACT: Linear

full_lenet_graph

_images/gtsrb.png

_images/frame0Mean1StdDev.png

_images/frameMinusMean.png
200

150

F o 100

B 100

_images/gtsrbStatsComputingRelative.png
99°bb

*Th

000
2071
000
Sz°or

b0

15

45

40

(%) Butinduog

07reu o5
1704
o™anodo.q
0704
171004
17Auog

071004

0”ung

_images/gtsrbStatsDataRelative.png
120 0Tveug 05
bre0- 1724
£970-ff 0TInodoag
g970-f 0724
9e°7-ff 171004
122t e 1 huod

8697 071004

70
60

(%) [5179 g-quT]fiowsy eleq

_images/gtsrbConfusionMatrix.png

_images/interactive_confusion_main.png
mo@nw

Al products/A11/01
Al products/A11/02
Al products/A11/03
Al products/Doz/o1
Al products/Do2/02
Al productsiLes

Al productsMOUS/o1
Al productsMOUS/02
Al products PART
A products/Q02

10: /Al productsioa
11 /Al productsiQos/or
12: /Al productsios/o2
13: /Al productsiQos/o3
14: /Al productsiQos/o
15: /Al products/Q13/01
16: /Al productsiQ13/02
17: /Al productsiQ19/01
18: /Al products/Q19/02
19: /Al productsiQ32
20: /Al productsiQ37/01
21 Al productsia37/02
22: /Al productsiQa1jor
23: Al productsiQa1/o2
24: /Al productsias3
25: /Al productsiass
26: /Al productsiQss/o1
27: Al productsiass/o2
28: /Al productsiQss/o3
29: Al productsiaes
30: /Al productsiQa3/01
31 /Al productsiQ3/02
32: /Al productsiasy
3 Al productsT1

382 Al productsiTA2

35: /Al products TF/OL
36: /Al products TFa/02.
37: Al products TFa/03
38: Only GALQUS/OL
39: only GALQUS/02
40:nly GALIQOG/03
41 fonly GALIGS0
42:/only GALGS.

3 nly GALIGSD

4 fonly GALIGS4.

5 fonly MAGIOS0/0L
45 fonly MAGIOS0/02
47 fonly MAGIOS0/03
5 fonly MAGIOE2/01
45 /only MAGI062/02
50: /Only MAGIQ62103
51 /Only MAGIQ62104
52:JOnly MAGIQE3.
50

Count

Confusion Matrix [/local/ls154584/0b222806/n2d2_cmak efect_cis.Target/ConfusionMatrix_test.dat] (sur Is154584)

Target:
Estimated:
0117 27 (37 & (507 67 707 87 (907 10: L [12: 13 [1a: 15 |16: (17 |16 (19 20: (21 |22: 23 |28: 25 |26: [27: 28: [20: 30 30 |32 |35 |3 35 |36: |37 |38: 30 [40: 41 42: 43 4d: d>: 46: 47: 45: 49 50: 51 52: 53 Cowt [Recal |Recall |Precson |Precsion
a a w A w A AR AR R DAL A I8 R DA R A AL (A AL (A AN (AL A JAD A AN L AR AL AN AL AN /AL JAI [On fOn fOnt JOntJon) O O /O 1O fOn {Oni {On fOn fon o & o2 wed A Ao
roc pro pre proe proc proc proc proe orac proc oro pr ora ro o oro 'pro pro ‘ro ' 'aro 'oro oro ‘ro ‘oo 'aro 'oro oo ‘ro ‘o 'aro 'oro o o ‘oo 'aro 'oro e G Gy Gy G4y G4 Gy Gy My y Ty B s
Hicks bt Gt bt Dt bt it bt ks sl duct dut dch At et At et At et At et At duc hct dc hct et ot ol due cct duet dut L0¢ L0t L (16 11 e 13 610 610 &0 &10 610,610, 610, 60
JATA K13 JATS G0t /507 153 MO| /MO AR 100 10 <10C 10C s10C 10C <101 101 S101 101 S0 103 s 104 S04 510 <103 5105 si0% 503 sie s SiGE S s1To STA /TP <TE /T 6101 6105 61020 4~ 9 4 601 01 0102 2100 2105 210 1043
o1 o2 03 01 J02SUOLSIOZT | 4 BIOY §02 403 804 501 3025101 81022 7101 102 0L Va2 3 o a1 oz a03 > /01 G231 |2 w0 4102 403 dls
| e 1| 18 12 [SpSp S (7 o] |1 1.2 |v| |15 8.2 A ESESENESE] T
3 e To[2 (3 (6| [3.[7 1[4 5L E 2 N 2 0 0 P gy g o g MR B2
oo 2 @ (1. [3.|2[1® ERCNED (5.1 |1 7 ENEEME! (3. i m| |3 |3 per
| (1.6 (5.3 ERCA 2 2 2 5 CRIE s
2| (316 s (48] 9 (s 25 @ (1 (18 |4 W1
2| (3.5 [Ljm| (1| |13 4) (2
s 10 s 1 |14 [1o[6. |2 L g 2 53 [P
= 3 5 o] (2[4 52 £ 1
52 nom T
28 ESERENERENE] ESjES] Tojo. (26316 |2 u [NEND ile. B a2 1| 1| |2
CRENISERCARNESCNTES | L T e[| (8| [1.|2.[3.|4 | |3 Lo(2 (362 6. 3| (6 (17722 (27| 1|1 5|1
o s EREMES - CHESsENE GAEA0 ESE P R PR o o528 3 (3 102 17
3. 2 0 s s
COEN ENCEE 1 3 5 I
T |8 3. | e 0 w7 2 7% 0 B
1
B

3871871

I o-o.co5 [8=0:755 | NN o-0<%

_images/items_viewer.png

_images/gtsrbStatsParametersRelative.png
00%0
5o
00%0
929
00%0
bo-- R
00%0
750

(%) [5376 8-3uT]flouay ueeq

oRew 405
7oy
0™jnodoug
0724
171004
1mnu0g

071004

0”ung

_images/gtsrbSuccessLearning.png
Success rate

0.98

0.96

0.94

0.92

0.9

0.88

Final:

93.8292%

100

200

300
steps

400

500

600

_images/metrics.png
Sensitivity &

Fl-score mmmmm

Precision e
Informedness

0.999

0.998

0.997 £

0.996 F

0.995

0.994

0.993

0.992

OV

_images/meanData.png
B 120

B 100

_images/memory_mapping.png
Memory usage (KWords)

1200

1000

800

600

400

200

0

\gl

LIRS

|Peak usage®='1186.5 KWords. 4

01234567 8